[1] A. Baïri, E. Zarco-Pernia, J.-M.G. De María, A review on natural convection in enclosures for engineering applications. The particular case of the parallelogrammic diode cavity, Applied Thermal Engineering, 63(1) (2014) 304-322.
[2] A. Rahimi, A.D. Saee, A. Kasaeipoor, E.H. Malekshah, A comprehensive review on natural convection flow and heat transfer, International Journal of Numerical Methods for Heat & Fluid Flow, (2019).
[3] K. Khanafer, K. Vafai, A critical review on the applications of fluid-structure interaction in porous media, International Journal of Numerical Methods for Heat & Fluid Flow, (2019).
[4] M.A. Nizamani, Z. Nizamani, A. Nakayama, M. Osman, Review of Fluid-structure Interaction Model in a Numerical Wave Tank with Offshore Structures Near the Free Surface, (2020).
[5] O. Doaré, S. Michelin, Piezoelectric coupling in energy-harvesting fluttering flexible plates: linear stability analysis and conversion efficiency, Journal of Fluids and Structures, 27(8) (2011) 1357-1375.
[6] M. Ghalambaz, S. Mehryan, A.I. Alsabery, A. Hajjar, M. Izadi, A. Chamkha, Controlling the natural convection flow through a flexible baffle in an L-shaped enclosure, Meccanica, 55(8) (2020) 1561-1584.
[7] M. Ghalambaz, S. Mehryan, R.K. Feeoj, A. Hajjar, I. Hashim, R.B. Mahani, Free convective heat transfer of a non-Newtonian fluid in a cavity containing a thin flexible heater plate: an Eulerian–Lagrangian approach, Journal of Thermal Analysis and Calorimetry, (2020) 1-16.
[8] S. Mehryan, M. Ghalambaz, R.K. Feeoj, A. Hajjar, M. Izadi, Free convection in a trapezoidal enclosure divided by a flexible partition, International Journal of Heat and Mass Transfer, 149 (2020) 119186.
[9] S. Mehryan, E. Izadpanahi, M. Ghalambaz, A. Chamkha, Mixed convection flow caused by an oscillating cylinder in a square cavity filled with Cu–Al 2 O 3/water hybrid nanofluid, Journal of Thermal Analysis and Calorimetry, 137(3) (2019) 965-982.
[10] A. Alsabery, M. Sheremet, M. Ghalambaz, A. Chamkha, I. Hashim, Fluid-structure interaction in natural convection heat transfer in an oblique cavity with a flexible oscillating fin and partial heating, Applied Thermal Engineering, 145 (2018) 80-97.
[11] H. Saleh, Z. Siri, I. Hashim, Role of fluid-structure interaction in mixed convection from a circular cylinder in a square enclosure with double flexible oscillating fins, International Journal of Mechanical Sciences, 161 (2019) 181-187.
[12] E. Jamesahar, M. Ghalambaz, A.J. Chamkha, Fluid–solid interaction in natural convection heat transfer in a square cavity with a perfectly thermal-conductive flexible diagonal partition, International Journal of Heat and Mass Transfer, 100 (2016) 303-319.
[13] A. Raisi, I. Arvin, A numerical study of the effect of fluid-structure interaction on transient natural convection in an air-filled square cavity, International Journal of Thermal Sciences, 128 (2018) 1-14.
[14] T. Basak, S. Roy, A. Balakrishnan, Effects of thermal boundary conditions on natural convection flows within a square cavity, International Journal of Heat and Mass Transfer, 49(23-24) (2006) 4525-4535.
[15] E. Heydari, A. Shatery, Investigation of the effects of two-way interaction between fluid and solid on transient natural displacement inside a square chamber with an elastic blade, Mechanical Engineering modares, 15(9) (2016) 396-406.( in persian)
[16] m. Khosravy, Investigation of free heat transfer within a chamber using the Boltzmann lattice method, Ministry of Science, Research and Technology - Shahrekord University - School of Engineering, 2012.
[17] X. Sun, Z. Ye, J. Li, K. Wen, H. Tian, Forced convection heat transfer from a circular cylinder with a flexible fin, International Journal of Heat and Mass Transfer, 128 (2019) 319-334.
[18] S. Jani, M. Mahmoodi, M. Amini, Natural Convection at Different Prandtl Numbers in Rectangular Cavities with a Fin on the Cold Wall, The Journal Of Energy: Engineering & Management, 2(4) (2012) 58-69.
[19] S. Nada, Natural convection heat transfer in horizontal and vertical closed narrow enclosures with heated rectangular finned base plate, International journal of heat and mass transfer, 50(3-4) (2007) 667-679.
[20] B.-S. Kim, D.-S. Lee, H.-S. Yoon, H.-G. Lee, M.-Y. Ha, A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations, Transactions of the Korean Society of Mechanical Engineers B, 31(3) (2007) 273-282.
[21] E. Sourtiji, D. Ganji, S. Seyyedi, Free convection heat transfer and fluid flow of Cu–water nanofluids inside a triangular–cylindrical annulus, Powder Technology, 277 (2015) 1-10.
[22] T. Richter, Numerical methods for fluid-structure interaction problems, Institute for Applied Mathematics, University of Heidelberg, Germany, (2010).
[23] M. Ghalambaz, S.M.H. Zadeh, S. Mehryan, I. Pop, D. Wen, Analysis of melting behavior of PCMs in a cavity subject to a non-uniform magnetic field using a moving grid technique, Applied Mathematical Modelling, 77 (2020) 1936-1953.
[24] R.W. Ogden, Non-linear elastic deformations, Courier Corporation, 1997.
[25] J. Donea, A. Huerta, J.-P. Ponthot, A. Rodriguez-Ferran, Arbitrary lagrangian-eulerian methods, volume 1 of encyclopedia of computational mechanics, chapter 14, John Wiley & Sons Ltd, 3 (2004) 1-25.
[26] A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker, C.S. Woodward, SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers, ACM Transactions on Mathematical Software (TOMS), 31(3) (2005) 363-396.
[27] B. Kim, D. Lee, M. Ha, H. Yoon, A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations, International journal of heat and mass transfer, 51(7-8) (2008) 1888-1906.
[28] J. Rahman Nezhad, S.A. Mirbozorgi, Numerical simulation of free convection around a stationary cylinder with constant heat flux and different diagonal locations using IB-LBM, Modares Mechanical Engineering, 17(4) (2017) 419-430.
[29] J. Lee, M. Ha, H. Yoon, Natural convection in a square enclosure with a circular cylinder at different horizontal and diagonal locations, International Journal of Heat and Mass Transfer, 53(25-26) (2010) 5905-5919.