شبیه‌سازی عددی جریان غیرنیوتنی خون در مدل سه‌بعدی دوشاخگی با یک شاخه غیرمسطح با گرفتگی موضعی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

در پژوهش حاضر، شبیه‌سازی عددی عبور جریان دائمی خون در مدل دوشاخگی غیرصفحه‌ای با سه شدت گرفتگی ملایم (%20)، متوسط (%50) و شدید (%80) انجام‌شده است. در این تحقیق، اثر روان‌شدگی برشی خون با مدل کرئو-یاسودا شبیه‌سازی‌ و از خواص ویسکوپلاستیک آن صرف نظر شده است. همچنین دو هندسه‌ی هم‌مرکز و خارج از مرکز برای گرفتگی در نظر گرفته‌شده است. نتایج بدست آمده از این مقاله نشان می‌دهد که لزجت غیرنیوتنی در مقایسه با لزجت نیوتنی، تفاوت‌های قابل توجهی در خطوط جریان ثانویه داشته و روان‌شدگی برشی به نحوی در خطوط جریان ثانویه تأثیر‌ ‌گذاشته بطوری که گردابه‌ها در مقطع میانی گرفتگی و پس از آن یا تشکیل نشده‌ یا اندازه‌ی کوچک‎تری داشته‌اند. همچنین، سرعت محوری در شاخه‌ی غیرمسطح با افزایش درصد گرفتگی، کاهش یافته و در نهایت، حداکثر تنش برشی دیواره‌ای با لزجت نیوتنی در قیاس با لزجت غیرنیوتنی، خطای قابل توجهی داشته و مقادیر تخمین زده‌شده توسط آن در اکثر موارد کمتر از لزجت غیرنیوتنی بوده است. این اختلاف تا %37 برای یک گرفتگی با شدت %80 نیز می‌رسد. همچنین، تغییرات سرعت و نرخ برش ناشی از عبور گرفتگی، سبب می‌شود تا مدل‌سازی لزجت غیرنیوتنی نقش مهمی را در تعیین خطوط جریان و اندازه سرعت ایفا نماید. به علاوه، با افزایش درصد گرفتگی، اثر انحنای رگ که موجب انحراف میدان سرعت به دیواره بیرونی می‌شود کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Simulation of Non-Newtonian Blood Flow in A Three-Dimensional Non-Planar Bifurcation with Stenosis

نویسندگان [English]

  • Ali Ahmadpour
  • Arman Khoshnevis
Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

In the present study, numerical simulation of the steady blood flow through the carotid artery with a non-planar geometry model and considering mild (20%), moderate (50%), and severe (80%) occlusion was performed. In this research, the shear-thinning behavior of the blood fluid is incorporated by the Carreau–Yasuda model, and the viscoplasticity of blood was ignored. Furthermore, concentric and eccentric geometries were considered for stenosis. By comparing the non-Newtonian and Newtonian viscosity results, significant differences were found in the secondary flow lines. Shear-thinning behavior affects the secondary flow lines so that the vortices are either not formed or are smaller in size in the middle of the stenosis and subsequent sections. Moreover, axial velocity profiles in the non-planar branch decreased by increasing stenosis percentage, and in estimating the maximum wall shear stress, the Newtonian model had a significant error compared to the non-Newtonian one, and the estimated values by the Newtonian model were less than the non-Newtonian in most cases (up to 37% for an 80% stenosis). In addition, variation of velocity and shear rate caused by stenosis reveals the importance of the non-Newtonian model in calculating streamlines and velocity magnitudes. Plus, as the percentage of stenosis increased, the vessel's curvature effect, which causes the velocity field to deviate to the inner wall, decreased.

کلیدواژه‌ها [English]

  • Non-Newtonian blood flow
  • Non-planar bifurcation
  • Atherosclerosis
  • Wall shear stress
  • Computational fluid dynamics
[1] F.J.H. Gijsen, Modeling of wall shear stress in large arteries., Technische Universiteit Eindhoven, 1998.
[2] F. Yilmaz, M.Y. Gundogdu, A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions, Korea-Australia Rheology Journal, 20(4) (2008) 197-211.
[3] D.N. Ku, D.P. Giddens, Pulsatile flow in a model carotid bifurcation, Arteriosclerosis: An Official Journal of the American Heart Association, Inc., 3(1) (1983) 31-39.
[4] F.J.H. Gijsen, F.N. van de Vosse, J.D. Janssen, The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model, Journal of biomechanics, 32(6) (1999) 601-608.
[5] F.J.H. Gijsen, E. Allanic, F.N. Van de Vosse, J.D. Janssen, The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90 curved tube, Journal of biomechanics, 32(7) (1999) 705-713.
[6] Y. Lu, X. Lu, L. Zhuang, W. Wang, Breaking symmetry in non‐planar bifurcations: distribution of flow and wall shear stress, Biorheology, 39(3, 4) (2002) 431-436.
[7] J. Chen, X.-Y. Lu, Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch, Journal of biomechanics, 37(12) (2004) 1899-1911.
[8] J. Chen, X.-Y. Lu, Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch, Journal of biomechanics, 39(5) (2006) 818-832.
[9] O. Arjmandi-Tash, S.E. Razavi, R. Zanbouri, Possibility of atherosclerosis in an arterial bifurcation model, BioImpacts: BI, 1(4) (2011) 225.
[10] G. Lorenzini, E. Casalena, CFD analysis of pulsatile blood flow in an atherosclerotic human artery with eccentric plaques, Journal of Biomechanics, 41(9) (2008) 1862-1870.
[11] M. Abbasian, M. Shams, Z. Valizadeh, A. Moshfegh, A. Javadzadegan, S. Cheng, Effects of different non-Newtonian models on unsteady blood flow hemodynamics in patient-specific arterial models with in-vivo validation, Computer methods and programs in biomedicine, 186 (2020) 105185.
[12] Q. Huang, J. Sun, C. Xu, Effects of waveform shape of pulsatile blood flow on hemodynamics in an artery bifurcation model, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,  (2020) 0954406220911397.
[13] R. Drescher, K.D. Mathias, H.J. Jaeger, G. Bockisch, E. Demirel, M.H. Gissler, E. Hauth, Clinical results of carotid artery stenting with a nitinol self-expanding stent (SMART stent), European radiology, 12(10) (2002) 2451-2456.
[14] S. Kefayati, D.W. Holdsworth, T.L. Poepping, Turbulence intensity measurements using particle image velocimetry in diseased carotid artery models: Effect of stenosis severity, plaque eccentricity, and ulceration, Journal of biomechanics, 47(1) (2014) 253-263.
[15] T.L. Poepping, R.N. Rankin, D.W. Holdsworth, Flow patterns in carotid bifurcation models using pulsed Doppler ultrasound: effect of concentric vs. eccentric stenosis on turbulence and recirculation, Ultrasound in medicine & biology, 36(7) (2010) 1125-1134.
[16] A.J. Fox, How to measure carotid stenosis, Radiology, 186(2) (1993) 316-318.
[17] R.F. Smith, B.K. Rutt, A.J. Fox, R.N. Rankin, Geometric characterization of stenosed human carotid arteries, Academic radiology, 3(11) (1996) 898-911.
[18] C. North American Symptomatic Carotid Endarterectomy Trial, Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis, New England Journal of Medicine, 325(7) (1991) 445-453.
[19] J.R. Cebral, P.J. Yim, R. Löhner, O. Soto, P.L. Choyke, Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging, Academic radiology, 9(11) (2002) 1286-1299.
[20] J. Dong, K. Inthavong, J. Tu, Image-based computational hemodynamics evaluation of atherosclerotic carotid bifurcation models, Computers in Biology and Medicine, 43(10) (2013) 1353-1362.
[21] T.L. Poepping, N. Nikolov, N. Rankin, M. Lee, D.W. Holdsworth, An in vitro system for Doppler ultrasound flow studies in the stenosed carotid artery bifurcation, Ultrasound in medicine & biology, 28(4) (2002) 495-506.
[22] A. Ahmadpour, S.P. Mousavi, Forced convective heat transfer of Carreau fluids in crossflows over multiple cylinders in tandem and staggered arrangements, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(6) (2020).