[1] F.M. Box, R.J. van der Gesst, M.C. Rutten, J.H. Reiber, The influence of flow, vessel diameter, and non-newtonian blood viscosity on the wall shear stress in a carotid bifurcation model for unsteady flow. Investigative radiology, 40(5) (2005) 277-294.
[2] M. Prosi, P. Zunino, K. Perktold, A. Quarteroni, Mathematical and numerical models for transfer of low-density lipoproteins through the arterial walls: a new methodology for the model set up with applications to the study of disturbed lumenal flow. Journal of biomechanics, 38(4) (2005) 903-917.
[3] N. Fatouraee, X. Deng, A. De Champlain, R. Guidoin, Concentration Polarization of Low Density Lipoproteins (LDL) in the Arterial System a. Annals of the New York Academy of Sciences, 858(1) (1998) 137-146.
[4] S. Fazli, E. Shirani, and M.R. Sadeghi, Numerical simulation of LDL mass transfer in a common carotid artery under pulsatile flows. Journal of biomechanics, 44(1) (2011) 68-76.
[5] A. Nematollahi, E. Shirani, I. Mirzaee, M.R. Sadeghi, Numerical simulation of LDL particles mass transport in human carotid artery under steady state conditions. Scientia Iranica, 19(3) (2012) 519-524.
[6] G. Rappitsch, K. Perktold, Computer simulation of convective diffusion processes in large arteries. Journal of biomechanics, 29(2) (1996) 207-215.
[7] J. Hong, C. Fu, H. Lin, W. Tan, Non-Newtonian effects on low-density lipoprotein transport in the arterial wall. Journal of Non-Newtonian Fluid Mechanics, 189(0) (2012) 1-7.
[8] J. Moore, C. Ethier, Oxygen mass transfer calculations in large arteries. 1997.
[9] D.K. Stangeby, C.R. Ethier, Coupled computational analysis of arterial LDL transport--effects of hypertension. Computer Methods in Biomechanics & Biomedical Engineering, 5(3) (2002) 233-241.
[10] S.S. Shibeshi, J. Evertt, D.D. Venable, W.E. Collinst, Simulated blood transport of low density lipoproteins in a three-dimensional and permeable T-junction. ASAIO journal, 51(3) (2005) 269-274.
[11] K. Jesionek, M. Kostur, Effects of shear stress on low-density lipoproteins (LDL) transport in the multi-layered arteries. International Journal of Heat and Mass Transfer, 81 (2015) 122-129.
[12] K. Jesionek, M. Kostur, Low-density lipoprotein accumulation within the right coronary artery walls for physiological and hypertierension conditions. Biosystems, 177 (2019) 39-43.
[13] J. Moradicheghamahi, J. Sadeghiseraji, M. Jahangiri, Numerical solution of the Pulsatile, non-Newtonian and turbulent blood flow in a patient specific elastic carotid artery. International Journal of Mechanical Sciences, 150 (2019) 393-403.
[14] D.L. Fry, Mathematical models of arterial transmural transport. American Journal of Physiology-Heart and Circulatory Physiology, 248(2) (1985) H240-H263.
[15] N. Sun, N.B. wood, A.D. Hughes, S.A. Thom, X. Yun Xun, Effects of transmural pressure and wall shear stress on LDL accumulation in the arterial wall: a numerical study using a multilayered model. American Journal of Physiology-Heart and Circulatory Physiology, 292(6) (2007) H3148-H3157.
[16] G. Karner, K. Perktold, H.P. ZEHENTNER, Computational modeling of macromolecule transport in the arterial wall. Computer Methods in Biomechanics and Biomedical Engineering, 4(6) (2001) 491-504.
[17] N. Yang, K. Vafai, Modeling of low-density lipoprotein (LDL) transport in the artery—effects of hypertension. International Journal of Heat and Mass Transfer, 49(5-6) (2006) 850-867.
[18] N. Yang, K. Vafai, Low-density lipoprotein (LDL) transport in an artery–A simplified analytical solution. International Journal of Heat and Mass Transfer, 51(3-4) (2008) 497-505.
[19] M. Khakpour, K. Vafai, A comprehensive analytical solution of macromolecular transport within an artery. International Journal of Heat and Mass Transfer, 51(11-12) (2008) 2905-2913.
[20] S. Chung, K. Vafai, Effect of the fluid–structure interactions on low-density lipoprotein transport within a multi-layered arterial wall. Journal of biomechanics, 45(2) (2012) 371-381.
[21] M. Roustaei, M.R. Nikmaneshi, B. Firoozabadi, Simulation of Low Density Lipoprotein (LDL) permeation into multilayer coronary arterial wall: Interactive effects of wall shear stress and fluid-structure interaction in hypertension. Journal of biomechanics, 67 (2018) 114-122.
[22] M. Iasiello, K. Vafai, A. Andreozzi, N. Bianco, Low-density lipoprotein transport through an arterial wall under hyperthermia and hypertension conditions–An analytical solution. Journal of biomechanics, 49(2) (2016) 193-204.
[23] M. Iasiello,K. vafai, A. Andreozzi, N. Bianco, Analysis of non-Newtonian effects within an aorta-iliac bifurcation region. Journal of biomechanics, 64 (2017) 153-163.
[24] K. Jesionek, A. Slapik, M. Kostur, Low-density lipoprotein transport through an arterial wall under hypertension–a model with time and pressure dependent fraction of leaky junction consistent with experiments. Journal of theoretical biology, 411 (2016) 81-91.
[25] W.J. Denny, M.T. Walsh, Numerical modelling of mass transport in an arterial wall with anisotropic transport properties. Journal of biomechanics, 47(1) (2014) 168-177.
[26] X. Liu, Y. Fan, X. Deng, Effect of the endothelial glycocalyx layer on arterial LDL transport under normal and high pressure. Journal of Theoretical Biology, 283(1) (2011) 71-81.
[27] K. Perktold, Pulsatile non-Newtonian blood flow in three-dimensional carotid bifurcation models: a numerical study of flow phenomena under different bifurcation angles. Journal of biomedical engineering, 13(6) (1991) 507-515.
[28] C. J Lee, A fluid–structure interaction study using patient-specific ruptured and unruptured aneurysm: The effect of aneurysm morphology, hypertension and elasticity. Journal of biomechanics, 46(14) (2013) 2402-2410.
[29] F.J. Gijsen, F.N. van de Vosse, J.D Janssen, The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. Journal of biomechanics, 32(6) (1999) 601-608.
[30] S.W ada, T. Karino, Theoretical prediction of low-density lipoproteins concentration at the luminal surface of an artery with a multiple bend. Annals of Biomedical Engineering, 30(6) (2002) 778-791.
[31] Y.S. Chatzizisis, M. Jonas, A.U. Coskun, R. Beigel, B.v. Stone, C. Maynard, R.G. Gerrity, W. Daley, C. Rogers, E.R Edelman, C.L Feldman, Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: an intravascular ultrasound and histopathology natural history study. Circulation, 117(8) (2008) 993-1002.
[32] X. Liu, Y.Fan, X. Deng, Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta. Journal of biomechanics, 44(6) (2011) 1123-1131.
[33] B.M. Johnston, Non-Newtonian blood flow in human right coronary arteries: steady state simulations. Journal of biomechanics, 37(5) (2004) 709-720.
[34] P. Ballyk, D. Steinman, C. Ethier, Simulation of non-Newtonian blood flow in an end-to-side anastomosis. Biorheology, 31(5) (1994) 565-586.
[35] J.V. Soulis, G.D. Giannoglou, Y.S. Chatzizisis, G.E. Parcharidis, G.E. Louridas, Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery. Medical engineering & physics, 30(1) (2008) 9-19.
[36] M.M. Molla, M. Paul, LES of non-Newtonian physiological blood flow in a model of arterial stenosis. Medical engineering & physics, 34(8) (2012) 1079-1087.
[37] D. Tang, , C. Yang, S. Mondal, F. Liu, G. Canton, T.S Hatsukami, C. Yuan, A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: in vivo MRI-based 2D/3D FSI models. Journal of biomechanics, 41(4) (2008) 727-736.
[38] H.A. González, N.O. Moraga, On predicting unsteady non-Newtonian blood flow. Applied mathematics and computation, 170(2) (2005) 909-923.
[39] L. D. Jou, S. Berger, Numerical simulation of the flow in the carotid bifurcation. Theoretical and Computational Fluid Dynamics, 10(1) (1998) 239-248.
[40] H. Younis, Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Biomechanics and modeling in mechanobiology, 3(1) (2004)17-32.