[1] J. Hughes, J. A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng., 194(2) (2005) 4135-4195.
[2] J. Cottrell, T.J.R. Hughes, A. Reali, Studies of refinement and continuity in isogeometric structural analysis, Comput.Methods Appl. Mech. Engrg. 196 (2007) 4160–4183
[3] Y. Bazilevs, L. Beir˜ao da Veiga, J. Cottrell, T.J.R. Hughes., G. Sangalli, Isogeometric analysis: Approximation, stability and error estimates for h-refined meshes. Math. Mod. Methods Appl. Sci. 16 (2006), 1-60.
[4] T. W. Sederberg, J. Zheng, A. Bakenov, A. Nasri, T-splines and T-NURCCSs, ACM Transactions on Graphics, 22(3) (2003). 477–484.
[5] Y. Bazilevs, V. M Calo. J. A Cottrell, J. A Evans, T. J. R Hughes, S. Lipton, T. W Sederberg,. Isogeometric analysis using T-splines. Computer Methods in Applied Mechanics and Engineering, 199(5) (2010), 229-263.
[6] R. Echter, M. Bischoff, Numerical efficiency, locking and unlocking of NURBS finite elements, Computer Method sin Applied Mechanics and Engineering, 199(1) 2010 374–382.
[8] R. Bouclier, T. Elguedj, A. Combescure, Efficient isogeometric NURBS-based solid-shell elements: Mixed formulation and B-bar method, Computer Methods in Applied Mechanics and Engineering, 267(1) 2013 86-110.
[9] R. Bouclier, T. Elguedj, A. Combescure, An isogeometric locking-free NURBS-based solid-shell element for geometrically nonlinear analysis, International Journal for Numerical Methods in Engineering, 101(10) 2015 777-808.
[10] J. F. Caseiro, R. A. F. Valente, A. Reali, J. Kiend, F. Auricchio, R. J. Alves de Sousa. On the assumed natural strain method to alleviate locking in solid-shell NURBS-based finite elements, Computational Mechanics, 53 (2014) 1341–1353.
[11] G. Kikis, W. Dornisch, S. Klinkel, Isogeometric Reissner-Mindlin shell analysis - employing different control meshes for displacements and rotations, Appl. Math. Mech. 16(1) (2016) 209 – 210.
[13] C. Adam, S. Bouabdallah, M. Zarroug, H. Maitournam, Improved numerical integration for locking treatment in isogeometric structural elements, Part I: Beams, Computer Methods in Applied Mechanics and Engineering 279 (2014) 1- 28.
[14] C. Adam, S. Bouabdallah, M. Zarroug, H. Maitournam, Improved numerical integration for locking treatment in isogeometric structural elements. Part II: Plates and shells, Computer Methods in Applied Mechanics and Engineering, 284(1) (2015) 106-137
[15] C. Adam, S. Bouabdallah, M. Zarroug, H. Maitournam, A Reduced Integration for Reissner-Mindlin Non-linear Shell Analysis Using T-Splines, in: Isogeometric Analysis and Applications, Springer, 2015 103-125.
[16] J. Kiendl, K. U. Bletzinger, J. Linhard, R. Wüchner, Isogeometric shell analysis with Kirchhoff-Love elements, Computer Methods in Applied Mechanics and Engineering, 198 (2009) 3902–3914.
[17] N. Nguyen-Thanh, J. Kiendl, H. Nguyen-Xuan, R. Wüchner, K.-U. Bletzinger, Y. Bazilevs, T. Rabczuk, Rotation free isogeometric thin shell analysis using PHT-splines, Computer Methods in Applied Mechanics and Engineering, 200 (2011) 3410–3424.
[18] D. J. Benson, Y. Bazilevs, M. C. Hsu, T. J. R. Hughes, A large deformation, rotation-free, isogeometric shell, Computer Methods in Applied Mechanics and Engineering, 200 (2011) 1367–1378.
[19] D. J. Benson, Y. Bazilevs, M. C. Hsu, T. J. R. Hughes, Isogeometric shellanalysis: The Reissner–Mindlin shell, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 276–289.
[20] D. J. Benson, S. Hartmann, Y. Bazilevs, M. C. Hsu, T. J. R. Hughes, Blended isogeometric shells, Computer Methods in Applied Mechanics and Engineering, 255(2013)133–146.
[21] R. Echter, B. Oesterle, M. Bischoff, A hierarchic family of isogeometricshell finite elements, Computer Methods in Applied Mechanics and Engineering, 254(2013)170–180.
[22] T. K. Uhm, S. K. Youn, T‐spline finite element method for the analysis of shell structures, International Journal for Numerical Methods in Engineering,80(4) (2009) 507-536.
[23] W. Dornisch, S. Klinkel, B. Simeon, Isogeometric Reissner–Mindlin shell analysis with exactly calculated director vectors, Computer Methods in Applied Mechanics and Engineering, 253 (2013) 491-504.
[24] W. Dornisch, S. Klinkel, Treatment of Reissner–Mindlin shells with kinks without the need for drilling rotation stabilization in an isogeometric frame-work, Comput. MethodsAppl. Mech. Eng.276(2014)35–66.
[25] L. Piegl, W. Tiller, The NURBS book: Monographs in visual communications, Springer Publisher, Berlin, second edition, ISBN: 1997, 1431-6897.
[26] O. C. Zienkiewicz, R. L. Taylor, The finite element method for solid and structural mechanics. Butterworth-heinemann., (2005).
[28] R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element accuracy. Finite Elements in Analysis and Design, 1(1) (1985) 3–20.