بررسی ‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌اثرات ‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌حریق ‌یک ‌صندلی ‌در ‌یک ‌سالن ‌سینما ‌با ‌استفاده ‌از سیستم‌های‌ تهویه ‌جابجایی،‌جت ‌برخوردی‌ و ‌لایه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه سمنان

2 استادیار گروه مکانیک، دانشگاه سمنان، سمنان، ایران

چکیده

در این مقاله به بررسی اثرات حریق یک صندلی در سالن سینما با استفاده از سیستم‌های تهویه جابجایی، جت برخوردی و لایه‌ای پرداخته شده است. از مهم‌ترین نتایج این بررسی می‌توان گفت میان سیستم‌های تهویه جابجایی،‌ جت برخوردی و لایه‌ای، دو سیستم تهویه جابجایی و جت برخوردی در کنترل دوده حاصل از حریق به میزان 31 درصد، در گاز کربن مونو اکسید 16 درصد و در گاز کربن دی اکسید 11 درصد توانستند بهتر از سایر سیستم‌ها عمل کنند، اشاره کرد. غلظت‌ گازهای سمی حاصل از حریق در هر سه سیستم در محدوده مجاز و بی خطر قرار گرفته است به این صورت که دو سیستم تهویه جابجایی و جت برخوردی 6/3 پی‌پی‌ام و سیستم تهویه لایه‌ای7/5 پی‌پی‌ام برای گاز کربن مونو اکسید و در مورد گاز کربن دی اکسید نیز دو سیستم تهویه جابجایی و جت برخوردی 330 پی‌پی‌ام و سیستم تهویه لایه‌ای نیز 370 پی‌پی‌ام ثبت کرده‌اند. در کنترل حرارت خروجی از درب‌های سالن سینما، سیستم‌های تهویه جابجایی و جت برخوردی در درب شماره 1 به میزان 66/6 درصد و در درب شماره 2 نیز سیستم تهویه جت برخوردی 96 درصد نسبت به سیستم تهویه لایه‌ای عملکرد بهتری داشته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effects of Loung Chair Fire in a Cinema Hall Using Displacement, Impingement Jet and Stratum Ventilation Systems

نویسندگان [English]

  • Mostafa Ramezani 1
  • Amir Mohammad Jadidi 2
  • Roholah Rafee 1
1 Semnan University
2 Assistant professor of mechanical engineering, Semnan university,Semnan, Iran
چکیده [English]

In this article, the effects of burning a chair in a cinema hall have been investigated by using displacement, impingement jet, and stratum ventilation systems. The most important results of this study by comparing displacement ventilation, impingement jet ventilation, and stratum ventilation is that displacement ventilation and impingement jet ventilation could decrease soot of fire by 31%, carbon dioxide 16%, and carbon monoxide 11% better than other systems. The concentration of toxic gases from the fire in all three systems is within the permissible and safe range in a way that the two systems of displacement ventilation and impingement jet ventilation recorded 6.3 ppm and 7.5 ppm for carbon monoxide respectively. In the case of carbon dioxide gas, two systems of displacement ventilation and impingement jet have decreased CO2 to 330 ppm and 370 ppm respectively. In controlling the heat exhaust from the doors of the cinema hall, displacement ventilation and impingement jet ventilation in door 1 are 66.6% better than stratum ventilation and in door 2 the impingement jet system is 96% better than the stratum ventilation system.

کلیدواژه‌ها [English]

  • air conditioning
  • Fire
  • Pyrosim
  • Carbon monoxide
  • Large Eddy Simulation
[1] Q. Chen, A.Moser, Indoor Air Quality and Thermal Comfort Under Six Kinds of Air Diffusion, ASHRAE journal, 97(1) (1991) 22-29.
[2] F. BAUMAN, E. ARENS, R. HELM, W. FISK, and D. FAULKNER, Air movement, comfort and ventilation in partitioned work stations, ASHRAE journal, 35(3) (1993) 42–50.
[3] G. Cao, Awbi H, Yao R, Fan Y, Sirén K, Kosonen R , Zhang J., A review of the performance of different ventilation and airflow distribution systems in buildings, Building and Environment, 73 (2014) 171–186.
[4] B. Muller C, Danks R, Stanke D, Osborn J, Fisher F, Hedrick R, Rasmussen R and H. E. D, Alevantis L, Rogers L, Schoen L, Beaton M, Bellenger L, Ashrae Standard 62.1, (2007).
[5] L. R. G. Yuan, Xiaoxiong, Qingyan Chen, A Critical Review of Displacement Ventilation, ASHRAE Transactions Research, (1998).
[6] Z. L. B. Yang , A.K. Melikov , A. Kabanshi , C. Zhang , F.S. Bauman , G. Cao , H. Awbi , H. Wig¨o , J. Niu , K.W.D. Cheong , K.W. Tham , M. Sandberg , P.V. Nielsen , R. Kosonen , R. Yao , S. Kato , S.C. Sekhar , S. Schiavon , T. Karimipanah , X. Li and PII:, A review of advanced air distribution methods - theory, practice, limitations and solutions. , Energy and Buildings, 202 (2019).
[7] Program and Budget Organization, Building protection against fire, Technical office, Tehran, (1368) (in persian).
[8] Heydar Hashemi, Reza Khoshzad, Fire search, Naghoos Andisheh, Tehran, (1385) (in persian).
[9] Office of National Regulation, National Building Regulations, The seventeenth topic, Tehran, (1389) (in persian).
[10] Atefeh Taherkhani, Effects of Carbon dioxide on health, Conference on Industrial and Process Air Filtration, Tehran, (1390) (in persian).
[11] I. Almesri, H. B. Awbi, E. Foda, K. Sire´n, An Air Distribution Index for Assessing the Thermal Comfort and Air Quality in Uniform and Nonuniform Thermal Environments., Indoor and Built Environment , 22(4)  (2012) 618-639.
[12] H. B. Awbi , Energy Efficient Room Air Distribution , Renewable Energy, 15 (1998) 239-299.
[13] C.K. Lee, H.N. Lam ,Computer modeling of displacement ventilation systems based on plume rise in stratified environment , Energy and Buildings, 39 (2007) 427-436.
[14] K. Lee, T. Zhang, Z. Jiang, and Q. Chen, Comparison of airflow and contaminant distributions in rooms with traditional displacement ventilation and under-floor air distribution systems, ASHRAE Transactions, 115 (2) (2009) 306–321.
[15] L. Tian, Z. Lin, Q. Wang, and J. Liu, Numerical investigation of indoor aerosol particle dispersion under stratum ventilation and under displacement ventilation, Indoor and Built Environment, 18(4) (2009) 360–375.
[16] L. Tian, Z. Lin, and Q. Wang, Experimental investigation of thermal and ventilation performances of stratum ventilation, Building and Environment, 46(6) (2011) 1309–1320.
[17] L. Tian, Z. Lin, and Q. Wang ,Comparison of gaseous contaminant diffusion under stratum ventilation and under displacement ventilation, Building and Environment, 45(9) (2010) 2035-2046.
[18] A. C. K. Lai and F. Z. Chen, Comparison of a new Eulerian model with a modified Lagrangian approach for particle distribution and deposition indoors, Atmospheric Environment, 41(25) (2007) 5249–5256.
[19] M. L. Pereira, G. Graudenz, A. Tribess, and L. Morawska, Determination of particle concentration in the breathing zone for four different types of office ventilation systems, Building and Environment, 44(5) (2009) 904–911.
[20] B. Zhao, Z. Zhang, X. Li, and D. Huang, Comparison of diffusion characteristics of aerosol particles in different ventilated rooms by numerical method, American Society of Heating, Refrigerating and Air-Conditioning Engineers, 39 (2004) 89–96.
[21] D. Rim and A. Novoselac, Ventilation effectiveness as an indicator of occupant exposure to particles from indoor sources, Building and Environment, 45(5) (2010) 1214–1224.
[22] K. Zhong, X. Yang, Effects of ventilation strategies and source locations on indoor particle deposition, Building and Environment, 45(3) (2010) 655–662.
[23] HOU Long-fei, LI Ming, CUI Wu-yuan, LIU Yu-chen, Numerical Simulation and Analysis of On-building High-rise Building Fires, Procedia Engineering, 11 (2011) 127-134.
[24] J. Wahlqvist and P. Van Hees, Validation of FDS for large-scale well-confined mechanically ventilated fire scenarios with emphasis on predicting ventilation system behavior, Fire Safety Journal, 62 (2) (2013) 102–114.
[25] S. Brohez and I. Caravita, Fire induced pressure in airthigh houses: Experiments and FDS validation, Fire Safety Journal, 114 (2020).
[26] Y. Xiao and J. Ma, Fire simulation test and analysis of laminated bamboo frame building, Construction and Building Material., 34 (2012) 257–266.
[27] L. Valasek, The use of PyroSim graphical user interface for FDS simulation of a cinema fire, International Journal of Mathematics and Computers in Simulation, 7 (2013) 258-266.
[28] J Glasa, L Valasek, P Weisenpacher and L Halada, Cinema Fire Modelling by FDS, International Conference on Mathematical Modelling in Physical Sciences, (2013).
[29] K. B. McGrattan, S. Hostikka, J. E. Floyd, and R. McDermott, Fire Dynamics Simulator, Technical Reference Guide, (2015).
[30] S. R. Turns, An Introduction to Combustion, 3rd edition, McGraw-Hill, USA (2012).
[31] Hadi Pasdarshahri, Development of a more compatible subnet model with large vortex simulation method for numerical simulation of indoor fire, Tarbiat Modarres University, Phd Thesis, Tehran, (1392) (in persian).
[32] L. H. Hu, R. Huo, W. K. Chow, Studies on buoyancy-driven back-layering flow in tunnel fires, Experimental Thermal and Fluid Science, 32 (2008) 1468-1483.
[33] Framework for Fire Safety Design ,New Zealand Building Code Clauses C1 C6 Protection from Fire, The Ministry of Business, Innovation and Employment, (2014).
[34] H. Jin Kim, David G. Lilley, Heat Release Rates of burning items in fires, American Institute of Aeronautics & Astronautics, 38th Aerospace Sciences Meeting & Exhibition, (2000).
[35] Mojtaba Tabatabaei, Building facilities calculations, Iran’s national library, Tehran, (1382) (in persian).
[36] Ardeshir Farshidianfar, Smoke control engineering in the building, Engineering Organization of Khorasan Razavi, Mashhad, (1395) (in persian).