[1] M. Sadighi, R. C. Alderliesten, & R Benedictus, Impact resistance of fiber-metal laminates: A review. International Journal of Impact Engineering, 49(2012) 77-90.
[2] G. Wu, & J. M. Yang, The mechanical behavior of GLARE laminates for aircraft structures. Jom, 57(1) (2005) 72-79.
[3] H.W. Nam, W.Hwang, Stacking Sequence Design of Fiber – Metal Laminate for Maximum Strength, Journal of Composite Materials, 35(18) (2001) 1654-1683.
[4] J. Lee, S. E. Kim, & K. Hong, Lateral buckling of I-section composite beams. Engineering Structures, 24(7) (2002) 955-964.
[5] J. Lee, S. E. Kim, Free vibration of thin-walled composite beams with I-shaped cross-sections. Composite structures, 55(2) (2002) 205-215.
[6] J. Lee, Flexural analysis of thin-walled composite beams using shear-deformable beam theory. Composite Structures, 70(2) (2005) 212-222.
[7] T. P.Vo, J. Lee, Flexural–torsional buckling of thin-walled composite box beams. Thin-walled structures, 45(9) (2007) 790-798.
[8] V. K. Goyala, R. K. Kapania. Dynamic stability of laminated beams subjected to non-conservative loading. ThinWalled Structures, 46 (2008) 1359-1369.
[9] G. N. Nurick, G. S. Langdon, Y.Chi, N. Jacob, Behaviour of sandwich panels subjected to intense air blast–Part 1: Experiments. Composite Structures, 91(4) (2009) 433-441.
[10] D. Karagiozova, G. N. Nurick, G. S. Langdon, Behaviour of sandwich panels subject to intense air blasts–Part 2: Numerical simulation. Composite structures, 91(4) (2009) 442-450.
[11] A. Mozaffari, H. Jafari, Investigation of the Effective Parameters on Buckling Load of FML Cylindrical Panel Using FSDT Shells Theory, (2010).
[12] S.B. Beheshti-Aval, M. Lezgy-Nazargah, A coupled refined high-order global– local theory and finite element model for static electromechanical response of smart multilayered/ sandwich beams, Archive of Applied Mechanic, 82 (2012) 1709-1752.
[13] M. Lezgy-Nazargah, S.B. Beheshti-Aval, Coupled refined layerwise theory for dynamic free and forced responses of piezoelectric laminated composite and sandwich beams, Meccanica, 48(6) (2013) 1479–1500.
[14] M. Lezgy-Nazargah, Efficient coupled refined finite element for dynamic analysis of sandwich beams containing embedded shear-mode piezoelectric layers, Mechanics of Advanced Materials and Structures, 23(3) (2016) 337-352.
[15] M. Lezgy-Nazargah, A generalized layered global-local beam theory for elasto-plastic analysis of thin-walled members, Thin-Walled Structures, 115 (2017) 48-57.
[16] B. Asgarian, M. Soltani, F. Mohri, Lateral-torsional buckling of tapered thin-walled beams with arbitrary cross-sections. Thin-walled structures, 62 (2013) 96-108.
[17] N. I. Kim, J. Lee. Divergence and flutter behavior of Beck’s type of laminated box beam. International Journal of Mechanical Sciences. 84 (2014) 91-101.
[18] M. M. Abadi, A. R. Daneshmehr, An investigation of modified couple stress theory in buckling analysis of micro composite laminated Euler–Bernoulli and Timoshenko beams. International Journal of Engineering Science, 75 (2014) 40-53.
[19] K. MalekzadehFard, M.Gholami, F. Reshadi, M. Livani, Free vibration and buckling analyses of cylindrical sandwich panel with magneto rheological fluid layer, Journal of Sandwich Structures and Materials, 20 (6) (2015) 1-27.
[20] T-T. Nguyen, N-I. Kim, J. Lee, Free vibration of thin-walled functionally graded open-section beams, Composite structures, 95 (2016) 105-116.
[21] T-T. Nguyen, N-I. Kim, J. Lee, Analysis of thin-walled open section beams with functionally graded materials, Composite structures, 138 (2016) 75-83.
[22] T-T. Nguyen, P.T. Thang, J. Lee, Lateral buckling analysis thin-walled functionally graded beams,” Composite structures, 160 (2017) 952-963.
[23] T-T. Nguyen, P.T. Thang, J. Lee, Flexural-torsional stability of thin-walled functionally graded open-section beams, Thin walled structures, 110 (2017) 88-96.
[24] H. Ravishankar, R. Rengarajan, K. Devarajan, B. Kaimal, Free vibration bahaviour of fiber metal laminates, hybrid composites, and functionally graded beams using finite element analysis. International Journal of Acoustics and Vibration, 21(4) (2016) 418-428.
[25] A. M. M. Bidgoli1a, M. Heidari-Rarani, Axial buckling response of fiber metal laminate circular cylindrical shells. Structural Engineering and Mechanics, 57(1) (2016) 45-63.
[26] A. L. Araújo, V. S. Carvalho, C. M. Soares, J. Belinha, A. J. M. Ferreira, Vibration analysis of laminated soft core sandwich plates with piezoelectric sensors and actuators. Composite Structures, 151(2016) 91-98.
[27] R. J.Mania, Z. Kolakowski, J. Bienias, P. Jakubczak, & K. Majerski, Comparative study of FML profiles buckling and postbuckling behaviour under axial loading. Composite Structures, 134(2015)216-225.
[28] D. Banat, Z. Kolakowski, R.J. Mania, Investigations of FML profile buckling and post-buckling behaviour under axial compression. Thin-Walled Structures, 107(2016)335-344.
[29] D. Banat, R.J. Mania, Failure assessment of thin-walled FML profiles during buckling and post buckling response. Composites Part B: Engineering, 112(2017)278-289.
[30] D. Banat, R.J. Mania, Progressive failure analysis of thin-walled Fiber Metal Laminate columns subjected to axial compression. Thin-Walled Structures, 122 (2018)52-63.
[31] D. Banat, & R. J. Mania, Stability and strength analysis of thin-walled GLARE composite profiles subjected to axial loading. Composite Structures, 212(2019) 338-345.
[32] M. Arefi, A. M. Zenkour, Nonlocal electro-thermo-mechanical analysis of a sandwich nanoplate containing a Kelvin–Voigt viscoelastic nanoplate and two piezoelectric layers. Acta Mechanica, 228(2) (2017) 475-493.
[33] M. Arefi, A. M. Zenkour, Vibration and bending analysis of a sandwich microbeam with two integrated piezo-magnetic face-sheets. Composite Structures, 159 (2017) 479-490
[34] H. Alidoost, J. Rezaeepazhand. Instability of a delaminated composite beam subjected to a concentrated follower force. Thin-Walled Structures. 120 (2017) 191-202.
[35] F. Taheri-Behrooz, M. Omidi, and M.M. Shokrieh, Experimental and numerical investigation of buckling behavior of composite cylinders with cutout. Thin-Walled Structures, 116(2017)136-144.
[36] F. Taheri-Behrooz, M. Omidi, Buckling of axially compressed composite cylinders with geometric imperfections. Steel and Composite Structures, 29(4) (2018) 557-567.
[37] H. Ahmadi, H. A. Rasheed, Lateral torsional buckling of anisotropic laminated thin-walled simply supported beams subjected to mid-span concentrated load. Composite Structures, 185(2018) 348-361.
[38] M. Mohandes, A. R. Ghasemi, M. Irani-Rahagi, K. Torabi, F. Taheri-Behrooz, Development of beam modal function for free vibration analysis of FML circular cylindrical shells. Journal of Vibration and Control, 24(14) (2018) 3026-3035.
[39] A. R. Ghasemi, M. Mohandes, Comparison between the frequencies of FML and composite cylindrical shells using beam modal function model. Journal of Computational Applied Mechanics, 50(2) (2019) 239-245.
[40] A. Asadi, A. H. Sheikh, O. T. Thomsen, Buckling behaviour of thin-walled laminated composite beams having open and closed sections subjected to axial and end moment loading. Thin-Walled Structures, 141(2019) 85-96.
[41] H. Aghamohammadi, R. Eslami-Farsani, Improvement in the flexural properties of basalt fibers/epoxyaluminum laminate composites using multi-walled carbon nanotubes, Amirkabir Journal of Mechanical Engineering , 51(3) (2019) 81-90, (In Persian).
[42] H. Aghamohammadi, R. Eslami-Farsani, A. Tcharkhtchi, The effect of multi-walled carbon nanotubes on the mechanical behavior of basalt fibers metal laminates: an experimental study. International Journal of Adhesion and Adhesives, 98 (2020) 102538.
[43] M. Soltani, Flexural-torsional stability of sandwich tapered I-beams with a functionally graded porous core. International Journal of Numerical Methods in Civil Engineering, 4(3) (2020)8-20.
[44] M. Soltani, B. Asgarian, F. Mohri, Improved finite element formulation for lateral stability analysis of axially functionally graded non-prismatic I-beams, International Journal of Structural Stability and dynamics, 19(9) (2019) 1950108.
[45] M. Soltani, B. Asgarian, Lateral-torsional stability analysis of a simply supported axially functionally graded beam with a tapered I-section, Mechanics of Composite Materials, (2020) 1-16.
[46] V.Z. Vlasov, Thin-Walled Elastic Beams, Israel Program for Scientific Translations, Jerusalem, (1961).
[47] C.W. Bert, M. Malik, Differential quadrature method in computational mechanics, a review, Applied Mechanics Reviews (1996),49: 1-28.
[48] Shu C. Differential Quadrature and Its Application in Engineering. Sprimger; (2000).
[49] Z. Zong, & Y. Zhang, Advanced differential quadrature methods. CRC press (2009).
[50] Long, A.C. ed., Composites forming technologies. Elsevier (2014).
[51] A. Vlot, L. B.Vogelesang, &T. J. De Vries, Towards application of fibre metal laminates in large aircraft. Aircraft Engineering and Aerospace Technology, (1999).
[52] M. Soltani, F. Atoufi, F. Mohri, R. Dimitri, & F. Tornabene, Nonlocal elasticity theory for lateral stability analysis of tapered thin-walled nanobeams with axially varying materials. Thin-Walled Structures, 159(2021) 107268.
[53] ANSYS, Version 5.4, Swanson Analysis System, Inc, (2007).