تحلیل کمانش جانبی تیر جدار نازک ساندویچی کامپوزیت-فلز با سطح مقطع متغیر و در نظر گرفتن کرنش‌های غیرخطی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی، دانشگاه کاشان، کاشان، ایران

2 گروه مهندسی عمران، دانشکده مهندسی، دانشگاه کاشان، ایران

چکیده

کامپوزیت‌های لایه‌ای الیاف-فلز که از ترکیب لایه‌های فلزی و کامپوزیت‌های تقویت شده با الیاف ساخته می‌شوند، به دلیل وزن کمتر و خواص مکانیکی مناسب‌تر، در صنایع هوایی، دریایی و خودروسازی کاربرد فراونی پیدا کرده‌اند. در این پژوهش برای اولین بار پایداری جانبی-پیچشی تیر باریک شونده با مقطع I شکل متقارن از جنس کامپوزیت هیبریدی چند لایه الیاف-فلز مورد بررسی قرار گرفته است. برای این منظور، معادلات پایداری جانبی-پیچشی و شرایط مرزی با به کارگیری مدل ولاسو برای مقاطع جدار نازک باز، تئوری کلاسیک لایه‌ای و با فرض تغییر شکل‌های کوچک تعیین می‌گردند. سپس با استفاده از یک رابطه کمکی دستگاه معادلات حاکم به یک معادله دیفرانسیل مستقل مرتبه چهار برحسب زاویه پیچش تبدیل می‌شود. در ادامه، معادله نهایی با بهره گیری از روش عددی مربعات دیفرانسیل و فرضیات این روش حل و مقدار بار کمانش جانبی-پیچشی محاسبه می‌شود. پس از بررسی صحت و دقت روش معرفی شده، اثرات پارامترهای مهم مانند، چیدمان لایه‌ها، زاویه قرارگیری الیاف، جنس الیاف، تغییر ارتفاع جان تیر، محل اعمال بار عرضی و کسر حجمی فلز بر ظرفیت کمانش جانبی تیر جدار نازک با مقطع متغیر و شرایط انتهایی گیردار-آزاد مورد بررسی قرار گرفته است. نتایج نشان داد که چیدمان بهینه با قرار گیری لایه‌های الیافی سازنده بال تیر با زاویه صفر درجه و لایه‌های الیافی تشکیل دهنده جان با زاویه 45 درجه بین دو ورق آلومینیومی حاصل می‌شود. همچنین ثابت شد که تغییرات درصد حجمی فلز در مقایسه با تغییر ارتفاع جان تیر نیم‌رخ، بار کمانش جانبی را با شدت بیشتری تغییر می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Lateral Stability Analysis of Thin-Walled Fiber-Metal Laminate Beam with Varying Cross-Section by Considering Nonlinear Strains

نویسندگان [English]

  • Masoumeh Soltani 1
  • Azadeh Soltani 2
1 Faculty of Engineering, University of Kashan, Kashan, Iran
2 Department of civil engineering, Faculty of Engineering, University of Kashan, Kashan, Iran
چکیده [English]

In this paper, the lateral-torsional buckling behavior of thin-walled fiber-metal laminate beams with varying I-section is perused using an innovative and accurate methodology. Considering the coupling between the bending displacements and the twist angle, the system of lateral stability equations is derived via the energy method in association with Vlasov’s model for thin-walled beam and the classic lamination theory. By uncoupling the equilibrium differential equations, the system of governing equations is transformed to a fourth-order differential equation in terms of the twist angle. The differential quadrature method is then applied to solve the resulting equation and to acquire the lateral buckling loads. The accuracy of the proposed methodology has been investigated by comparing the results with the outcomes obtained using ANSYS finite element software. In the following, the effect of significant parameters such as stacking sequence, fiber angle, fiber type, web tapering ratio, load height parameter, and volume fraction of metal on lateral buckling load of fixed-free fiber-metal laminate tapered I-beam under uniformly distributed load has been investigated. The results show that the optimum fiber orientation is achieved is obtained by placing fibers at 45 in the web and 0 in both flanges between two aluminum sheets.

کلیدواژه‌ها [English]

  • Fiber-metal laminates
  • Lateral-torsional buckling
  • Thin-walled section
  • Tapered beam
  • Differential quadrature method
[1] M. Sadighi, R. C. Alderliesten, & R Benedictus, Impact resistance of fiber-metal laminates: A review. International Journal of Impact Engineering, 49(2012) 77-90.
[2] G. Wu, & J. M. Yang, The mechanical behavior of GLARE laminates for aircraft structures. Jom, 57(1) (2005) 72-79.
[3] H.W. Nam, W.Hwang, Stacking Sequence Design of Fiber – Metal Laminate for Maximum Strength, Journal of Composite Materials, 35(18) (2001) 1654-1683.
[4] J. Lee, S. E. Kim, & K. Hong, Lateral buckling of I-section composite beams. Engineering Structures, 24(7) (2002) 955-964.
[5] J. Lee, S. E. Kim, Free vibration of thin-walled composite beams with I-shaped cross-sections. Composite structures, 55(2) (2002) 205-215.
[6] J. Lee, Flexural analysis of thin-walled composite beams using shear-deformable beam theory. Composite Structures, 70(2) (2005) 212-222.
[7] T. P.Vo, J. Lee, Flexural–torsional buckling of thin-walled composite box beams. Thin-walled structures, 45(9) (2007) 790-798.
[8] V. K. Goyala, R. K. Kapania. Dynamic stability of laminated beams subjected to non-conservative loading. ThinWalled Structures, 46 (2008) 1359-1369.
[9] G. N. Nurick, G. S. Langdon, Y.Chi, N. Jacob, Behaviour of sandwich panels subjected to intense air blast–Part 1: Experiments. Composite Structures, 91(4) (2009) 433-441.
[10] D. Karagiozova, G. N. Nurick, G. S. Langdon, Behaviour of sandwich panels subject to intense air blasts–Part 2: Numerical simulation. Composite structures, 91(4) (2009) 442-450.
[11] A. Mozaffari, H. Jafari, Investigation of the Effective Parameters on Buckling Load of FML Cylindrical Panel Using FSDT Shells Theory, (2010).
[12] S.B. Beheshti-Aval, M. Lezgy-Nazargah, A coupled refined high-order global– local theory and finite element model for static electromechanical response of smart multilayered/ sandwich beams, Archive of Applied Mechanic, 82 (2012) 1709-1752.
[13] M. Lezgy-Nazargah, S.B. Beheshti-Aval, Coupled refined layerwise theory for dynamic free and forced responses of piezoelectric laminated composite and sandwich beams, Meccanica, 48(6) (2013) 1479–1500.
[14] M. Lezgy-Nazargah, Efficient coupled refined finite element for dynamic analysis of sandwich beams containing embedded shear-mode piezoelectric layers, Mechanics of Advanced Materials and Structures, 23(3) (2016) 337-352.
[15] M. Lezgy-Nazargah, A generalized layered global-local beam theory for elasto-plastic analysis of thin-walled members, Thin-Walled Structures, 115 (2017) 48-57.
[16] B. Asgarian, M.  Soltani, F. Mohri, Lateral-torsional buckling of tapered thin-walled beams with arbitrary cross-sections. Thin-walled structures, 62 (2013) 96-108.
[17] N. I. Kim, J. Lee. Divergence and flutter behavior of Beck’s type of laminated box beam. International Journal of Mechanical Sciences. 84 (2014) 91-101.
[18] M. M. Abadi, A. R. Daneshmehr, An investigation of modified couple stress theory in buckling analysis of micro composite laminated Euler–Bernoulli and Timoshenko beams. International Journal of Engineering Science, 75 (2014) 40-53.
[19] K. MalekzadehFard, M.Gholami, F. Reshadi, M. Livani, Free vibration and buckling analyses of cylindrical sandwich panel with magneto rheological fluid layer, Journal of Sandwich Structures and Materials, 20 (6) (2015) 1-27.
[20] T-T. Nguyen, N-I. Kim, J. Lee, Free vibration of thin-walled functionally graded open-section beams, Composite structures, 95 (2016) 105-116.
[21] T-T. Nguyen, N-I. Kim, J. Lee, Analysis of thin-walled open section beams with functionally graded materials, Composite structures, 138 (2016) 75-83.
[22] T-T. Nguyen, P.T. Thang, J. Lee, Lateral buckling analysis thin-walled functionally graded beams,” Composite structures, 160 (2017) 952-963.
[23] T-T. Nguyen, P.T. Thang, J. Lee, Flexural-torsional stability of thin-walled functionally graded open-section beams, Thin walled structures, 110 (2017) 88-96.
[24] H. Ravishankar, R. Rengarajan, K. Devarajan, B. Kaimal, Free vibration bahaviour of fiber metal laminates, hybrid composites, and functionally graded beams using finite element analysis. International Journal of Acoustics and Vibration, 21(4) (2016) 418-428.
[25] A. M. M. Bidgoli1a, M. Heidari-Rarani, Axial buckling response of fiber metal laminate circular cylindrical shells. Structural Engineering and Mechanics, 57(1) (2016) 45-63.
[26] A. L. Araújo, V. S. Carvalho, C. M. Soares, J. Belinha, A. J. M.  Ferreira, Vibration analysis of laminated soft core sandwich plates with piezoelectric sensors and actuators. Composite Structures, 151(2016) 91-98.
[27] R. J.Mania, Z.  Kolakowski, J. Bienias, P. Jakubczak, & K.  Majerski, Comparative study of FML profiles buckling and postbuckling behaviour under axial loading. Composite Structures, 134(2015)216-225.
[28] D. Banat, Z.  Kolakowski, R.J. Mania, Investigations of FML profile buckling and post-buckling behaviour under axial compression. Thin-Walled Structures, 107(2016)335-344.
[29] D. Banat, R.J. Mania, Failure assessment of thin-walled FML profiles during buckling and post buckling response. Composites Part B: Engineering, 112(2017)278-289.
[30] D.  Banat, R.J. Mania, Progressive failure analysis of thin-walled Fiber Metal Laminate columns subjected to axial compression. Thin-Walled Structures, 122 (2018)52-63.
[31] D. Banat, & R. J.  Mania, Stability and strength analysis of thin-walled GLARE composite profiles subjected to axial loading. Composite Structures, 212(2019) 338-345.
[32] M. Arefi, A. M. Zenkour, Nonlocal electro-thermo-mechanical analysis of a sandwich nanoplate containing a Kelvin–Voigt viscoelastic nanoplate and two piezoelectric layers. Acta Mechanica, 228(2) (2017) 475-493.
[33] M. Arefi, A. M. Zenkour, Vibration and bending analysis of a sandwich microbeam with two integrated piezo-magnetic face-sheets. Composite Structures, 159 (2017) 479-490
[34] H. Alidoost, J. Rezaeepazhand. Instability of a delaminated composite beam subjected to a concentrated follower force. Thin-Walled Structures. 120 (2017) 191-202.
[35] F.  Taheri-Behrooz, M.  Omidi, and M.M. Shokrieh, Experimental and numerical investigation of buckling behavior of composite cylinders with cutout. Thin-Walled Structures, 116(2017)136-144.
[36] F. Taheri-Behrooz, M. Omidi, Buckling of axially compressed composite cylinders with geometric imperfections. Steel and Composite Structures, 29(4) (2018) 557-567.
[37] H. Ahmadi, H. A. Rasheed, Lateral torsional buckling of anisotropic laminated thin-walled simply supported beams subjected to mid-span concentrated load. Composite Structures, 185(2018) 348-361.
[38] M. Mohandes, A. R. Ghasemi, M. Irani-Rahagi, K. Torabi, F. Taheri-Behrooz, Development of beam modal function for free vibration analysis of FML circular cylindrical shells. Journal of Vibration and Control, 24(14) (2018) 3026-3035.
[39] A. R. Ghasemi, M. Mohandes, Comparison between the frequencies of FML and composite cylindrical shells using beam modal function model. Journal of Computational Applied Mechanics, 50(2) (2019) 239-245.
[40] A. Asadi, A. H. Sheikh, O. T. Thomsen, Buckling behaviour of thin-walled laminated composite beams having open and closed sections subjected to axial and end moment loading. Thin-Walled Structures, 141(2019) 85-96.
[41] H. Aghamohammadi, R. Eslami-Farsani, Improvement in the flexural properties of basalt fibers/epoxyaluminum laminate composites using multi-walled carbon nanotubes, Amirkabir Journal of Mechanical Engineering , 51(3) (2019) 81-90, (In Persian).
[42] H. Aghamohammadi, R. Eslami-Farsani, A. Tcharkhtchi, The effect of multi-walled carbon nanotubes on the mechanical behavior of basalt fibers metal laminates: an experimental study. International Journal of Adhesion and Adhesives, 98 (2020) 102538.
[43] M. Soltani, Flexural-torsional stability of sandwich tapered I-beams with a functionally graded porous core. International Journal of Numerical Methods in Civil Engineering, 4(3) (2020)8-20.
[44] M. Soltani, B. Asgarian, F. Mohri, Improved finite element formulation for lateral stability analysis of axially functionally graded non-prismatic I-beams, International Journal of Structural Stability and dynamics, 19(9) (2019) 1950108.
[45] M. Soltani, B. Asgarian, Lateral-torsional stability analysis of a simply supported axially functionally graded beam with a tapered I-section, Mechanics of Composite Materials, (2020) 1-16.
[46] V.Z. Vlasov, Thin-Walled Elastic Beams, Israel Program for Scientific Translations, Jerusalem, (1961).
[47] C.W. Bert, M. Malik, Differential quadrature method in computational mechanics, a review, Applied Mechanics Reviews (1996),49: 1-28.
[48] Shu C. Differential Quadrature and Its Application in Engineering. Sprimger; (2000).
[49] Z. Zong, & Y. Zhang, Advanced differential quadrature methods. CRC press (2009).
[50] Long, A.C. ed., Composites forming technologies. Elsevier (2014).
[51] A. Vlot, L. B.Vogelesang, &T. J. De Vries, Towards application of fibre metal laminates in large aircraft. Aircraft Engineering and Aerospace Technology, (1999).
[52] M. Soltani, F. Atoufi, F. Mohri, R. Dimitri, & F. Tornabene, Nonlocal elasticity theory for lateral stability analysis of tapered thin-walled nanobeams with axially varying materials. Thin-Walled Structures, 159(2021) 107268.
[53] ANSYS, Version 5.4, Swanson Analysis System, Inc, (2007).