[1] P.J. Bártolo, I. Gibson, History of stereolithographic processes, in: Stereolithography, Springer, 2011, pp. 37-56.
[2] I. Gibson, D.W. Rosen, B. Stucker, M. Khorasani, Additive manufacturing technologies, 3rd ed., Springer, 2021.
[3] T. Wohlers, T. Gornet, History of additive manufacturing, Wohlers report, 24(2014) (2014) 118.
[4] A. Su, S.J. Al'Aref, History of 3D Printing, in: 3D Printing Applications in Cardiovascular Medicine, Elsevier, 2018, pp. 1-10.
[5] A. Khorasani, I. Gibson, J.K. Veetil, A.H. Ghasemi, A review of technological improvements in laser-based powder bed fusion of metal printers, International Journal of Advanced Manufacturing Technology, (2020).
[6] F. Fina, S. Gaisford, A.W. Basit, Powder bed fusion: The working process, current applications and opportunities, in: 3D printing of pharmaceuticals, Springer, 2018, pp. 81-105.
[7] I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, A. Du Plessis, Qualification of Ti6Al4V ELI alloy produced by laser powder bed fusion for biomedical applications, JOM, 70(3) (2018) 372-377.
[8] V. Bhavar, P. Kattire, V. Patil, S. Khot, K. Gujar, R. Singh, A review on powder bed fusion technology of metal additive manufacturing, in: 4th International conference and exhibition on Additive Manufacturing Technologies-AM-2014, 2014, pp. 1-2.
[9] A. Mazzoli, Selective laser sintering in biomedical engineering, Medical & biological engineering & computing, 51(3) (2013) 245-256.
[10] R. Li, J. Liu, Y. Shi, L. Wang, W. Jiang, Balling behavior of stainless steel and nickel powder during selective laser melting process, The International Journal of Advanced Manufacturing Technology, 59(9-12) (2012) 1025-1035.
[11] B. Song, X. Zhao, S. Li, C. Han, Q. Wei, S. Wen, J. Liu, Y. Shi, Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: A review, Frontiers of Mechanical Engineering, 10(2) (2015) 111-125.
[12] E. Louvis, P. Fox, C.J. Sutcliffe, Selective laser melting of aluminium components, Journal of Materials Processing Technology, 211(2) (2011) 275-284.
[13] W. Harun, N. Manam, M. Kamariah, S. Sharif, A. Zulkifly, I. Ahmad, H. Miura, A review of powdered additive manufacturing techniques for Ti-6al-4v biomedical applications, Powder Technology, 331 (2018) 74-97.
[14] A. Khorasani, I. Gibson, M. Goldberg, G. Littlefair, Production of Ti-6Al-4V acetabular shell using selective laser melting: possible limitations in fabrication, Rapid Prototyping Journal, (2017).
[15] A.M. Khorasani, I. Gibson, M. Goldberg, G. Littlefair, A survey on mechanisms and critical parameters on solidification of selective laser melting during fabrication of Ti-6Al-4V prosthetic acetabular cup, Materials & Design, 103 (2016) 348-355.
[16] A. Du Plessis, P. Sperling, A. Beerlink, L. Tshabalala, S. Hoosain, N. Mathe, S.G. Le Roux, Standard method for microCT-based additive manufacturing quality control 2: density measurement, MethodsX, 5 (2018) 1117-1123.
[17] M. Mani, S. Feng, B. Lane, A. Donmez, S. Moylan, R. Fesperman, Measurement science needs for real-time control of additive manufacturing powder bed fusion processes, (2015).
[18] E. Hernández-Nava, C. Smith, F. Derguti, S. Tammas-Williams, F. Léonard, P. Withers, I. Todd, R. Goodall, The effect of density and feature size on mechanical properties of isostructural metallic foams produced by additive manufacturing, Acta Materialia, 85 (2015) 387-395.
[19] H. Gong, K. Rafi, T. Starr, B. Stucker, The effects of processing parameters on defect regularity in Ti-6Al-4V parts fabricated by selective laser melting and electron beam melting, in: 24th annual international solid freeform fabrication symposium—an additive manufacturing conference, Austin, TX, 2013, pp. 424-439.
[20] A.E. Wilson-Heid, A.M. Beese, Fracture of laser powder bed fusion additively manufactured Ti–6Al–4V under multiaxial loading: Calibration and comparison of fracture models, Materials Science and Engineering: A, 761 (2019) 137967.
[21] A. Vilardell, I. Yadroitsev, I. Yadroitsava, M. Albu, N. Takata, M. Kobashi, P. Krakhmalev, D. Kouprianoff, G. Kothleitner, A. du Plessis, Manufacturing and characterization of in-situ alloyed Ti6Al4V (ELI)-3 at.% Cu by laser powder bed fusion, Additive Manufacturing, 36 (2020) 101436.
[22] M. Masoomi, S.M. Thompson, N. Shamsaei, Laser powder bed fusion of Ti-6Al-4V parts: Thermal modeling and mechanical implications, International Journal of Machine Tools and Manufacture, 118 (2017) 73-90.
[23] A.M. Khorasani, I. Gibson, A. Ghasemi, A. Ghaderi, Modelling of laser powder bed fusion process and analysing the effective parameters on surface characteristics of Ti-6Al-4V, International journal of mechanical sciences, 168 (2020) 105299.
[24] A.M. Khorasani, I. Gibson, A. Ghasemi, A. Ghaderi, A comprehensive study on variability of relative density in selective laser melting of Ti-6Al-4V, Virtual and Physical Prototyping, 14(4) (2019) 349-359.
[25] A.T. Beaucamp, Y. Namba, P. Charlton, S. Jain, A.A. Graziano, Finishing of additively manufactured titanium alloy by shape adaptive grinding (SAG), Surface Topography: Metrology and Properties, 3(2) (2015) 024001.
[26] A.M. Khorasani, I. Gibson, N.G. Chegini, M. Goldberg, A.H. Ghasemi, G. Littlefair, An improved static model for tool deflection in machining of Ti–6Al–4V acetabular shell produced by selective laser melting, Measurement, 92 (2016) 534-544.
[27] A. Khorasani, I. Gibson, M. Goldberg, G. Littlefair, On the role of different annealing heat treatments on mechanical properties and microstructure of selective laser melted and conventional wrought Ti-6Al-4V, Rapid Prototyping Journal, (2017).
[28] A. Mohammad, A.M. Al-Ahmari, A. AlFaify, M.K. Mohammed, Effect of melt parameters on density and surface roughness in electron beam melting of gamma titanium aluminide alloy, Rapid Prototyping Journal, (2017).
[29] J. Sieniawski, W. Ziaja, K. Kubiak, M. Motyka, Microstructure and mechanical properties of high strength two-phase titanium alloys, Titanium alloys-advances in properties control, (2013) 69-80.
[30] A. Imanian, K. Leung, N. Iyyer, P. Li, D.H. Warner, Optimize Additive Manufacturing Post-Build Heat Treatment and Hot Iso-Static Pressing Process Using an Integrated Computational Materials Engineering Framework, in: ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2018, pp. V002T002A064.
[31] P. Petrovskiy, A. Sova, M. Doubenskaia, I. Smurov, Influence of hot isostatic pressing on structure and properties of titanium cold-spray deposits, The International Journal of Advanced Manufacturing Technology, 102(1-4) (2019) 819-827.
[32] N.E. Uzan, S. Ramati, R. Shneck, N. Frage, O. Yeheskel, On the effect of shot-peening on fatigue resistance of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting (AM-SLM), Additive Manufacturing, 21 (2018) 458-464.
[33] L. Hackel, J.R. Rankin, A. Rubenchik, W.E. King, M. Matthews, Laser peening: A tool for additive manufacturing post-processing, Additive Manufacturing, 24 (2018) 67-75.
[34] M.T. Jovanović, S. Tadić, S. Zec, Z. Mišković, I. Bobić, The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti–6Al–4V alloy, Materials & design, 27(3) (2006) 192-199.
[35] S.E. Brika, Y.F. Zhao, M. Brochu, J. Mezzetta, Multi-objective build orientation optimization for powder bed fusion by laser, Journal of Manufacturing Science and Engineering, 139(11) (2017).
[36] B. Fotovvati, M. Balasubramanian, E. Asadi, Modeling and Optimization Approaches of Laser-Based Powder-Bed Fusion Process for Ti-6Al-4V Alloy, Coatings, 10(11) (2020) 1104.
[37] A.M. Aboutaleb, M.J. Mahtabi, M.A. Tschopp, L. Bian, Multi-objective accelerated process optimization of mechanical properties in laser-based additive manufacturing: Case study on Selective Laser Melting (SLM) Ti-6Al-4V, Journal of Manufacturing Processes, 38 (2019) 432-444.
[38] J. Jiang, X. Xu, J. Stringer, Optimisation of multi-part production in additive manufacturing for reducing support waste, Virtual and Physical Prototyping, 14(3) (2019) 219-228.
[39] N. Lebaal, Y. Zhang, F. Demoly, S. Roth, S. Gomes, A. Bernard, Optimised lattice structure configuration for additive manufacturing, CIRP Annals, 68(1) (2019) 117-120.
[40] G. Strano, L. Hao, R. Everson, K. Evans, A new approach to the design and optimisation of support structures in additive manufacturing, The International Journal of Advanced Manufacturing Technology, 66(9-12) (2013) 1247-1254.
[41] A.M. Aboutaleb, L. Bian, A. Elwany, N. Shamsaei, S.M. Thompson, G. Tapia, Accelerated process optimization for laser-based additive manufacturing by leveraging similar prior studies, IISE Transactions, 49(1) (2017) 31-44.
[42] M. Ashby, Multi-objective optimization in material design and selection, Acta materialia, 48(1) (2000) 359-369.
[43] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE transactions on evolutionary computation, 6(2) (2002) 182-197.
[44] M. Khorasani, A. Ghasemi, U.S. Awan, E. Hadavi, M. Leary, M. Brandt, G. Littlefair, W. O’Neil, I. Gibson, A study on surface morphology and tension in laser powder bed fusion of Ti-6Al-4V, The International Journal of Advanced Manufacturing Technology, 111(9) (2020) 2891-2909.
[45] C. Sainte-Catherine, M. Jeandin, D. Kechemair, J.-P. Ricaud, L. Sabatier, Study of Dynamic Absorptivity at 10.6 µm (CO2) and 1.06 µm (Nd-YAG) Wavelengths as a Function of Temperature, Le Journal de Physique IV, 1(C7) (1991) C7-151-C157-157.
[46] J. Berthier, Micro-drops and digital microfluidics, William Andrew, 2012.
[47] A.Y. Malkin, A.I. Isayev, Rheology: concepts, methods, and applications, Elsevier, 2017.
[48] C. Qiu, C. Panwisawas, M. Ward, H.C. Basoalto, J.W. Brooks, M.M. Attallah, On the role of melt flow into the surface structure and porosity development during selective laser melting, Acta Materialia, 96 (2015) 72-79.
[49] S. Coeck, M. Bisht, J. Plas, F. Verbist, Prediction of lack of fusion porosity in selective laser melting based on melt pool monitoring data, Additive Manufacturing, 25 (2019) 347-356.
[50] L. Scime, J. Beuth, Melt pool geometry and morphology variability for the Inconel 718 alloy in a laser powder bed fusion additive manufacturing process, Additive Manufacturing, 29 (2019) 100830.
[51] A.M. Khorasani, I. Gibson, A.R. Ghaderi, Rheological characterization of process parameters influence on surface quality of Ti-6Al-4V parts manufactured by selective laser melting, The International Journal of Advanced Manufacturing Technology, 97(9-12) (2018) 3761-3775.
[52] S. Schiaffino, A.A. Sonin, Formation and stability of liquid and molten beads on a solid surface, Journal of fluid mechanics, 343 (1997) 95-110.
[53] Y. Tian, D. Tomus, P. Rometsch, X. Wu, Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting, Additive Manufacturing, 13 (2017) 103-112.
[54] S. Evans, E. Jones, P. Fox, C. Sutcliffe, Photogrammetric analysis of additive manufactured metallic open cell porous structures, Rapid Prototyping Journal, (2018).
[55] Y.-L. Lo, B.-Y. Liu, H.-C. Tran, Optimized hatch space selection in double-scanning track selective laser melting process, The International Journal of Advanced Manufacturing Technology, 105(7) (2019) 2989-3006.
[56] M. Simonelli, Y.Y. Tse, C. Tuck, Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti–6Al–4V, Materials Science and Engineering: A, 616 (2014) 1-11.
[57] B. Baufeld, O. Van der Biest, R. Gault, Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: microstructure and mechanical properties, Materials & Design, 31 (2010) S106-S111.
[58] L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Höges, K. Wissenbach, Ductility of a Ti‐6Al‐4V alloy produced by selective laser melting of prealloyed powders, Rapid Prototyping Journal, (2010).
[59] S. Cao, R. Chu, X. Zhou, K. Yang, Q. Jia, C.V.S. Lim, A. Huang, X. Wu, Role of martensite decomposition in tensile properties of selective laser melted Ti-6Al-4V, Journal of Alloys and Compounds, 744 (2018) 357-363.