[1] T. Inoue, Y. Ishida, T. Kiyohara, Nonlinear vibration analysis of the wind turbine blade (occurrence of the superharmonic resonance in the out of plane vibration of the elastic blade), Journal of vibration and acoustics, 134(3) (2012).
[2] B. Fitzgerald, B. Basu, S.R. Nielsen, Active tuned mass dampers for control of in‐plane vibrations of wind turbine blades, Structural Control and Health Monitoring, 20(12) (2013) 1377-1396.
[3] H.M. Negm, K.Y. Maalawi, Structural design optimization of wind turbine towers, Computers & Structures, 74(6) (2000) 649-666.
[4] C. Sun, V. Jahangiri, Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper, Mechanical Systems and Signal Processing, 105 (2018) 338-360.
[5] J. Arrigan, V. Pakrashi, B. Basu, S. Nagarajaiah, Control of flapwise vibrations in wind turbine blades using semi‐active tuned mass dampers, Structural Control and Health Monitoring, 18(8) (2011) 840-851.
[6] M.A. Lackner, M.A. Rotea, Passive structural control of offshore wind turbines, Wind energy, 14(3) (2011) 373-388.
[7] P. Murtagh, A. Ghosh, B. Basu, B. Broderick, Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence, Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 11(4) (2008) 305-317.
[8] S. Colwell, B. Basu, Tuned liquid column dampers in offshore wind turbines for structural control, Engineering Structures, 31(2) (2009) 358-368.
[9] H.R. Karimi, M. Zapateiro, N. Luo, Semiactive vibration control of offshore wind turbine towers with tuned liquid column dampers using H∞ output feedback control, in: 2010 IEEE International Conference on Control Applications, IEEE, 2010, pp. 2245-2249.
[10] S.K. Yalla, A. Kareem, J.C. Kantor, Semi-active tuned liquid column dampers for vibration control of structures, Engineering Structures, 23(11) (2001) 1469-1479.
[11] S.J. Johnson, J.P. Baker, C. Van Dam, D. Berg, An overview of active load control techniques for wind turbines with an emphasis on microtabs, Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 13(2‐3) (2010) 239-253.
[12] M.A. Lackner, G. van Kuik, A comparison of smart rotor control approaches using trailing edge flaps and individual pitch control, Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 13(2‐3) (2010) 117-134.
[13] V. Maldonado, J. Farnsworth, W. Gressick, M. Amitay, Active control of flow separation and structural vibrations of wind turbine blades, Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 13(2‐3) (2010) 221-237.
[14] M.N. Svendsen, S. Krenk, J. Høgsberg, Resonant vibration control of rotating beams, Journal of sound and vibration, 330(9) (2011) 1877-1890.
[15] L.Y. Pao, K.E. Johnson, Control of wind turbines, IEEE Control systems magazine, 31(2) (2011) 44-62.
[16] A.F. Vakakis, O.V. Gendelman, L.A. Bergman, D.M. McFarland, G. Kerschen, Y.S. Lee, Nonlinear targeted energy transfer in mechanical and structural systems, Springer Science & Business Media, 2008.
[17] K. Yang, Y.-W. Zhang, H. Ding, T.-Z. Yang, Y. Li, L.-Q. Chen, Nonlinear energy sink for whole-spacecraft vibration reduction, Journal of Vibration and Acoustics, 139(2) (2017).
[18] S. Bab, S.E. Khadem, M. Shahgholi, Lateral vibration attenuation of a rotor under mass eccentricity force using non-linear energy sink, International Journal of Non-Linear Mechanics, 67 (2014) 251-266.
[19] S. Bab, S.E. Khadem, M. Shahgholi, Vibration attenuation of a rotor supported by journal bearings with nonlinear suspensions under mass eccentricity force using nonlinear energy sink, Meccanica, 50(9) (2015) 2441-2460.
[20] S. Bab, M. Najafi, J.F. Sola, A. Abbasi, Annihilation of non-stationary vibration of a gas turbine rotor system under rub-impact effect using a nonlinear absorber, Mechanism and Machine Theory, 139 (2019) 379-406.
[21] F. Nucera, F.L. Iacono, D. McFarland, L. Bergman, A. Vakakis, Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: Experimental results, Journal of sound and vibration, 313(1-2) (2008) 57-76.
[22] M.A. Al-Shudeifat, Highly efficient nonlinear energy sink, Nonlinear Dynamics, 76(4) (2014) 1905-1920.
[23] F. Romeo, G. Sigalov, L.A. Bergman, A.F. Vakakis, Dynamics of a linear oscillator coupled to a bistable light attachment: numerical study, Journal of Computational and Nonlinear Dynamics, 10(1) (2015).
[24] X. Fang, J. Wen, J. Yin, D. Yu, Highly efficient continuous bistable nonlinear energy sink composed of a cantilever beam with partial constrained layer damping, Nonlinear Dynamics, 87(4) (2017) 2677-2695.
[25] H. Wang, L. Tang, Modeling and experiment of bistable two-degree-of-freedom energy harvester with magnetic coupling, Mechanical Systems and Signal Processing, 86 (2017) 29-39.
[26] S.S. Rao, Vibration of continuous systems, John Wiley & Sons, 2019.
[27] F. Georgiades, A. Vakakis, Dynamics of a linear beam with an attached local nonlinear energy sink, Communications in Nonlinear Science and Numerical Simulation, 12(5) (2007) 643-651.
[28] P. Asgharifard-Sharabiani, H. Ahmadian, Nonlinear model identification of oil-lubricated tilting pad bearings, Tribology International, 92 (2015) 533-543.
[29] S. Bab, S. Khadem, M. Mahdiabadi, M. Shahgholi, Vibration mitigation of a rotating beam under external periodic force using a nonlinear energy sink (NES), Journal of Vibration and Control, 23(6) (2017) 1001-1025.
[30] A.E. Mamaghani, S. Khadem, S. Bab, Vibration control of a pipe conveying fluid under external periodic excitation using a nonlinear energy sink, Nonlinear Dynamics, 86(3) (2016) 1761-1795.
[31] J.P. Den Hartog, Mechanical vibrations, Courier Corporation, 1985.