مطالعه تحلیلی تأثیر شل شدگی بر رفتار ارتعاشات غیرخطی اتصالات پیچ و مهره‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک- واحد شیراز -دانشگاه آزاد اسلامی –شیراز .ایران

2 گروه مهندسی مکانیک . واحد شیراز .دانشگاه آزاد اسلامی –شیراز .ایران

3 گروه مهندسی مکانیک . واحد شیراز .دانشگاه آزاد اسلامی –شیراز .ایران

4 گروه مکانیک –دانشگاه علم و صنعت –تهران –ایران

چکیده

در این تحقیق رفتار ارتعاشات غیرخطی اتصال پیچی تک لبه به صورت تحلیلی و تجربی مطالعه شده است. بر این اساس، در ابتدا با در نظر قرار دادن اثرات رفتار غیرخطی در محل اتصال پیچ، یک مدل غیرخطی دو درجه‌ آزادی برای این نوع اتصالات ارائه شده است. در ادامه، به منظور تعیین پارامترهای مجهول مدل ارائه شده، خصوصیات ارتعاشی این سازه با استفاده از آنالیز مودال تجربی و روش بروزرسانی مدل، تخمین زده شده است. از فرکانس‌های طبیعی برای تشکیل تابع هدف بهینه‌سازی بروزرسانی مدل استفاده و الگوریتم کرم شب‌تاب برای حل مسئله‌ی بهینه‌سازی، استفاده شده است. در نهایت، تأثیر دامنه نیروی تحریک و نیروی پیش بار پیچ‌ها بر رفتار دینامیکی این سیستم‌ها مطالعه شده است. بررسی منحنی‌های دامنه-فرکانس نشان می‌دهد که کاهش نیروی پیش‌بار پیچ‌ها باعث کاهش فرکانس طبیعی و همچنین اعوجاج منحنی دامنه-فرکانس به سمت چپ می‌شود که نشان دهنده رفتار غیرخطی نرم‌شونده سیستم با کاهش نیروی اعمالی می‌باشد. علاوه بر این، مقایسه مقادیر فرکانس‌های طبیعی تئوری و تجربی نشان می‌دهد که مدل چند درجه آزادی ارائه شده با دقت بسیار مناسبی مشخصه‌های ارتعاشی این سیتسم‌ها را پیش‌بینی می‌کند و با استفاده از این مدل می‌توان رفتار دینامیکی این سیستم‌ها را به ازای پارامترهای مختلف مطالعه کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analytical Study on Effect of Loosening on Nonlinear Vibration Behavior of Bolted Joints

نویسندگان [English]

  • Abouzar Pirdayr 1
  • Mehrdad Mohammadi 2
  • Mohammad Javad Kazemzadeh-Parsi 3
  • Majid Rajabi 4
1 Department of Mechanical Engineering –Shiraz Branch Islamic Azad University shiraz Iran
2 Department of Mechanical Engineering –Shiraz Branch Islamic Azad University shiraz Iran
3 Department of Mechanical Engineering –Shiraz Branch Islamic Azad University shiraz Iran
4 School of Mechanical Engineering - Iran University of Science And Technology
چکیده [English]

Bolt connections often loosen under environmental loading conditions and system vibrations, which can lead to disaster risks during its operation. In this study, the nonlinear vibration behavior of an aluminum single-lap joint has been studied analytically and experimentally. Accordingly, considering the effects of nonlinear behavior at the bole joint, a nonlinear two-degree of freedom model for this type of connection is proposed. Then, in order to determine the unknown parameters of the proposed model, the vibrational and dynamic properties of this structure have been estimated using experimental modal analysis and model updating method. Finally, the effect of the amplitude of the excitation force and the preload force of the bolts on the dynamic behavior of these systems has been studied analytically. Examination of amplitude-frequency curves shows that reducing the preload force of the bolts reduces the natural frequency and also distorts the amplitude-frequency curve to the left side, which indicates the softening nonlinear behavior of the system with decreasing applied bolt preload force. In addition, the comparison of the theoretical and experimental natural frequencies shows that the proposed model predicts the vibrational characteristics of these systems with good accuracy, and using the proposed model can study the dynamic behavior of these systems for different parameters

کلیدواژه‌ها [English]

  • Bolted joint vibrations
  • Model updating method
  • Firewall algorithm
  • Frequency response curve
[1] M. Rezaee, V. Maleki, A New Nonlinear Model for Flexural Vibration Analysis of a Cracked Beam with a Fatigue Crack, Journal of Applied and Computational Sciences in Mechanics, 22(2) (2011) 35-52.
[2] M. Ghaderi, H. Ghaffarzadeh, V.A. Maleki, Investigation of vibration and stability of cracked columns under axial load, Earthquakes and Structures, 9(6) (2015) 1181-1192.
[3] Q. Sun, B. Yuan, X. Mu, W. Sun, Bolt preload measurement based on the acoustoelastic effect using smart piezoelectric bolt, Smart Materials and Structures, 28(5) (2019) 23-45.
[4] N. Jamia, H. Jalali, J. Taghipour, M. Friswell, H.H. Khodaparast, An equivalent model of a nonlinear bolted flange joint, Mechanical Systems and Signal Processing, 153 (2021) 67-89.
[5] Y. Luan, Z.-Q. Guan, G.-D. Cheng, S. Liu, A simplified nonlinear dynamic model for the analysis of pipe structures with bolted flange joints, Journal of Sound and Vibration, 331(2) (2012) 325-344.
[6] D.J. Segalman, A four-parameter Iwan model for lap-type joints,  (2005).
[7] M. Yoshimura, K. Okushima, Measurement of dynamic rigidity and damping property for simplified joint models and simulation by computer, Annals of the CIRP, 25(1) (1977) 193-198.
[8] N.N. Balaji, M.R. Brake, On the modal surrogacy of joint parameter estimates in bolted joints, in:  Nonlinear Structures and Systems, Volume 1, Springer, 2020, pp. 137-140.
[9] A.T. Mathis, N.N. Balaji, R.J. Kuether, A.R. Brink, M.R. Brake, D.D. Quinn, A review of damping models for structures with mechanical joints, Applied Mechanics Reviews, 72(4) (2020) 23-45.
[10] H. Ahmadian, H. Jalali, Identification of bolted lap joints parameters in assembled structures, Mechanical Systems and Signal Processing, 21(2) (2007) 1041-1050.
[11] F. Gant, P. Rouch, F. Louf, L. Champaney, Definition and updating of simplified models of joint stiffness, International Journal of Solids and Structures, 48(5) (2011) 775-784.
[12] T. Guo, L. Li, L. Cai, Y. Zhao, Alternative method for identification of the dynamic properties of bolted joints, Journal of mechanical science and technology, 26(10) (2012) 3017-3027.
[13] H. Ouyang, M. Oldfield, J. Mottershead, Experimental and theoretical studies of a bolted joint excited by a torsional dynamic load, International Journal of Mechanical Sciences, 48(12) (2006) 1447-1455.
[14] G.O. Adeoti, F. Fan, M. Huihuan, S. Shen, Investigation of aluminium bolted joint (HBJ) system behavior, Thin-Walled Structures, 144 (2019) 34-56.
[15] D. Li, C. Xu, J. Kang, Z. Zhang, Modeling tangential friction based on contact pressure distribution for predicting dynamic responses of bolted joint structures, Nonlinear Dynamics, 101(1) (2020) 255-269.
[16] L. Shuguo, M. Yanhong, Z. Dayi, H. Jie, Studies on dynamic characteristics of the joint in the aero-engine rotor system, Mechanical Systems and Signal Processing, 29 (2012) 120-136.
[17] M. Mayer, L. Gaul, Segment-to-segment contact elements for modelling joint interfaces in finite element analysis, Mechanical systems and signal processing, 21(2) (2007) 724-734.
[18] G. Song, P. Zhang, L. Li, M. Singla, D. Patil, H. Li, Y. Mo, Vibration control of a pipeline structure using pounding tuned mass damper, Journal of Engineering Mechanics, 142(6) (2016) 34-54.
[19] E.S. Buice, D. Otten, R.H. Yang, S.T. Smith, R.J. Hocken, D.L. Trumper, Design evaluation of a single-axis precision controlled positioning stage, Precision engineering, 33(4) (2009) 418-424.
[20] X. Cai, L.R. Taerwe, Y. Yuan, Hysteretic behavior of UHPC beam-column joints after fire exposure, Fire Safety Journal, 117 (2020) 10-27.
[21] D.D. Quinn, Modal analysis of jointed structures, Journal of Sound and Vibration, 331(1) (2012) 81-93.
[22] G. Park, K.-N. Hong, H. Yoon, Vision-based structural FE model updating using genetic algorithm, Applied Sciences, 11(4) (2021) 16-32.
[23] F. Adel, S. Shokrollahi, M. Jamal-Omidi, H. Ahmadian, A model updating method for hybrid composite/aluminum bolted joints using modal test data, Journal of Sound and Vibration, 396(4) (2017) 172-185.
[24] S. Bograd, P. Reuss, A. Schmidt, L. Gaul, M. Mayer, Modeling the dynamics of mechanical joints, Mechanical Systems and Signal Processing, 25(8) (2011) 2801-2826.
[25] X.-S. Yang, Nature-inspired metaheuristic algorithms, Luniver press, 2010.
[26] X.-S. Yang, Firefly algorithms for multimodal optimization, in:  International symposium on stochastic algorithms, Springer, 2009, pp. 169-178.
[27] W.A. Khan, N.N. Hamadneh, S.L. Tilahun, J. Ngnotchouye, A review and comparative study of firefly algorithm and its modified versions, Optimization Algorithms-Methods and Applications, 45 (2016) 281-313.
[28] H. Wang, X. Zhou, H. Sun, X. Yu, J. Zhao, H. Zhang, L. Cui, Firefly algorithm with adaptive control parameters, Soft computing, 21(17) (2017) 5091-5102.