کنترل مقاوم و تطبیقی ربات اسکلت خارجی برای تعقیب مسیر‌های مطلوب اصلاح شده بر اساس معیار پایداری نقطه گشتاور صفر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مهندسی مکانیک، دانشگاه شهید بهشتی، تهران، ایران

2 هیئت علمی/ دانشگاه شهید بهشتی پردیس فنی عباسپور

3 دانشجوی دکتری، مهندسی مکانیک، دانشگاه شهید بهشتی، تهران، ایران،

چکیده

ایجاد مسیرهای مرجع و توانایی تعقیب مسیرهای ایجاد شده در حضور اغتشاشات و عدم قطعیت‌ها از مسائل مهم در بررسی عملکرد ربات اسکلت خارجی می‌باشد. یکی از روش‌های طراحی مسیر ربات‌های راه رونده الگوریتم تولید الگوی مرکزی می‌باشد. این الگوریتم به صورت چرخه حدی رفتار می‌کند و اﻏﺘﺸﺎﺷﺎت وارده را ﺑﻪ ﺳﺮﻋﺖ از سیستم ﺣﺬف کرده و مسیرهای موزونی را ایجاد می‌کند. در این مقاله برای ایجاد مسیرهای مرجع هر یک ازمفاصل ربات از ترکیب هفت عدد نوسانگر هپفیلد اصلاح شده با قابلیت تغییر در مشخصه‌های فرکانس و دامنه راه رفتن استفاده شده است. اصلاح برخط مسیرهای مرجع مفاصل ربات به کمک سیگنال خطای بازخوردی بین محل نقطه گشتاور صفر مطلوب و نقطه گشتاور صفر ربات در هر لحظه انجام شده است. به منظور مقابله با اغتشاشات و عدم قطعیت‌ها با دامنه نامعلوم سیستم و دستیابی به حداکثر کارایی در تعقیب مسیرهای مرجع ربات، از کنترل کننده  تطبیقی مد لغزشی دینامیکی سریع ترمینالی با قابلیت حذف پدیده چترینگ، همگرایی زمان محدود و افزایش مقاومت نسبت به کنترل کننده مد لغزشی معمولی استفاده شده است. همچنین با حرکت لینک کمر حداکثر پایداری حرکت ربات بر اساس معیار نقطه گشتاور صفر ایجاد شده است. برای دستیابی به بهترین عملکرد، پارامترهای کنترل کننده، ضرایب نوسانگرها و اتصال بین آن‌ها بهینه شده‌اند. عملکرد روش ارائه شده با کنترل کننده مد لغزشی مقایسه شده است که نتایج برتری روش ارائه شده را نشان داده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Robust and Adaptive Control of an Exoskeleton Robot For Tracking Modified Desired Trajectory Based on Zero Moment Point Stability Theory

نویسندگان [English]

  • majid mokhtari 1
  • Mostafa Taghizadeh 2
  • mahmood mazare 3
1 School of Mechanical engineering, ShahidBeheshti University, Tehran, Iran
2 shahid beheshti university
3 School of Mechanical Engineering, ShahidBeheshtiUniversity, Tehran, Iran.
چکیده [English]

The Creation of reference trajectories and the ability to track them in the presence of disturbances and uncertainties are important issues in investigating the exoskeleton performance. One of the methods of trajectory planning is the central pattern generation algorithm. This algorithm will behave in a limit cycle and the temporal disturbances have quickly removed the system and created harmonious trajectories. In this paper, for the creation of reference trajectories of each joint, a combination of seven modified Hopfield oscillators is used which provides the ability to change the frequency and domain of walking. Online modification of robot joint reference trajectories is done by using the feedback error signal between desired zero momentum point and zero momentum point of the robot at any moment. In order to cope with the disturbances and uncertainty with the uncertain domain and achieve maximum efficiency in tracking robot reference trajectories, an adaptive dynamic fast terminal sliding mode controller is used due to the elimination of chattering phenomena, and finite-time convergence. Also, by moving the Upper link the maximum stability of the robot based on the zero momentum point criterion is guaranteed. To achieve maximum performance, controller parameters, oscillator coefficients, and connections between them are optimized. Finally, the performance of the proposed method is compared with a sliding mode controller. The results demonstrate the superiority of the proposed method.

کلیدواژه‌ها [English]

  • Exoskeleton
  • adaptive dynamic fast terminal sliding mode controller
  • Central pattern generation
  • Hopfield oscillator
  • Zero moment point stability theory
[1] R. Bogue, Exoskeletons and robotic prosthetics: a review of recent developments, Industrial Robot: An International Journal, 36(5) (2009) 421-427.
[2] R. S. Mosher, Handy man to Hardiman, Technical Report, SAE Technical Paper, (1967).
[3] M. Vukobratovic, B. Borovac, D. Surla, D. Stokic, Biped Locomotion, Springer-Verlag,  Berlin, (1990) 1-349.
[4] S. Jezernik, G. Colombo, T. Kelly, H. Frueh, M. Morari, Robotic Orthosis Lokomat: A rehabilitation and research tool, Technology at the Neural Interface, 6(1) (2003) 108–115.
[5] A. Duschau-Wicke, T. Brunsch, L. L. ünenburger, R. Riener, Adaptive support for Patient-Cooperative gait rehabilitation with the lokomat, IEEE/RSJ International Conference on Intelligent Robots and Systems Acropolis Convention Center Nice, France, 2008.
[6] H. Kazerooni, Hybrid Control of the berkeley lower extremity exoskeleton (BLEEX), The International Journal of Robotics, 25(2) (2006)  561-573.
[7] B. Siciliano, O. Khatib, Springer Handbook of Robotics, Springer-Verlag, Berlin, (2008) 773-793.
[8] T. Yan, M. Cempini, C. M. Oddo, N. Vitiello, Review of assistive strategies in powered lower-limb orthosis and exoskeletons, Robotics and Autonomous Systems, 64(1) (2015) 120-136.
[9] A. J. Ijspeert. Central pattern generators for locomotion control in animals and robots: A review, Neural Networks, 21(2008) 642–653.
[10] K. Fujiwara, F. Kanehiro, S. Kajita, K. Yokoi, H. Saito, K. Harada, K. Kaneko and H. Hirukawa. The first human-size humanoid that can fall over safely and stand up again. In F. Kanehiro, editor, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, 2 (2003) 1920–1926.
[11] C. Li, R. Lowe, T. Ziemke, A novel approach to locomotion learning: Actor-critic architecture using central pattern generators and dynamic motor primitives. Frontiers in Neuro robotics, 8(3) (2014) 1–17.
[12] A. J. Ijspeert, A. Crespi, D. Ryczko, From swimming to walking with a salamander robot driven by a spinal cord model. Science, 315 (2007) 1416–1420
[13] M. H. Chiang, F. R. Chiang. Anthropomorphic design of the human-like walking robot. Journal of Bionic Engineering, 10 (2) (2013) 186–193.
[14] J. Yu, R. Ding, Q. Yang, M. Tan, W. Wang, J. Zhang, On a bio-inspired amphibious robot capable of multimodal motion. IEEE/ASME Transactions on Mechatronics, 17 (2012) 847–856.
[15] Q. D. Wu, C. J. Liu, J. Q. Zhang, Q. J. Chen, Survey of locomotion control of legged robots inspired by biological concept. Science in China Series F: Information Sciences, 52 (2009) 1715–1729.
[16] C. P. Santos, V. Matos, CPG modulation for navigation and omni directional quadruped locomotion. Robotics and Autonomous Systems, 60 (2012) 912–927.
[17] M. E. Abardeh, Unsymmetrical Path Planning for Biped Robot Passing through Obstacles, MS Thesis, Ferdowsi University of Mashhad, (2012).
[18] C.  Liu, D. Wang, E. D. Goodman, Qijun Chen. Adaptive Walking Control of Biped Robots Using Online Trajectory Generation Method Based on Neural Oscillators, Journal of Bionic Engineering, 13 (2016) 572–584.
[19] M. O. Ajayi, Modeling and control of actuated lower limb exoskeletons : a mathematical application using central pattern generators and nonlinear feedback control techniques, PHD Thesis, University Paris-Est, (2016).
[20] L. Righetti, A. J.  Ijspeert, Programmable  central   generators:  an application   to   biped   locomotion control. Proceedings of the 2006 IEEE International Conference on Robotics and Automation Orlando, Florida - May 2006.
[21] K. Fujiwara, F. Kanehiro, S. Kajita, K. Yokoi, H. Saito, K. Harada, K. Kaneko and H. Hirukawa, Evolution of central pattern generators for the control of a five-link bipedal walking mechanism, PALADYN Journal of Behavioral Robotics, 3(1) (2012) 45-53.
[22] Z. Qu, J. Dorsey, Robust tracking control of robots by a linear feedback law. IEEE Transactions on Automatic Control, 36 (1991) 1081–1084.
[23] Y. Hong, Finite-time stabilization and stability of a class of controllable systems. Systems & control letters,46 (2002) 231–236.
[24] S. Venkataraman, S. Gulati, Terminal sliding modes: A new approach to nonlinear control synthesis, Advanced Robotics, 43(1991) 443–448.
[25] G. Bartolini, A. Ferrara, A. Levant and E. Usai, On second order sliding mode controllers. In Variable structure systems, sliding mode and nonlinear control, Springer, 247 (1999) 329–350.
[26] H. Wang, L. Shi, Z. Man, J. Zheng, S. Li, M. Yu, C. Jiang, H. Kong, Z. Cao, Continuous fast nonsingular terminal sliding mode control of automotive electronic throttle systems using finite-time exact observer, IEEE Trans. Ind. Electron. 65 (2018) 7160–7172.
[27] H. Wang, Z. Man, W. Shen, Z. Cao, J. Zheng, J. Jin, M.T. Do, Robust control for steer-by-wire systems with partially known dynamics, IEEE Trans. Ind. Inf. 10 (2014) 2003–2015.
[28] M. Mokhtari, M. Taghizadeh, M. Mazare, Impedance Control Based on Optimal Adaptive High Order Super Twisting Sliding Mode for a 7-DOF Lower Limb Exoskeleton, meccanica, 56 (2021) 538-548.
[29] J. Yang, J. Su, S. Li, X. Yu, High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach, IEEE Trans. Ind. Inf. 610 (2014) 604–614.
[30] Y. Hu, H. Wang, Robust tracking control for vehicle electronic throttle using adaptive dynamic sliding mode and extended state observer Mechanical, Systems and Signal Processing, 135 (2020) 106375.
[31] G. Shuai, H. J B, Adaptive Dynamic Terminal Sliding Mode Control Method, Second International Conference on Intelligent Computation Technology and Automation, IEEE, (2009) 735-738.
[32] T. Madani, B. Daachi, K. Djouani, Modular -Controller-Design-Based Fast Terminal Sliding Mode for Articulated Exoskeleton Systems, IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 25(3) 2017.
[33] H.  Hemami and C. L.  Golliday, The inverted   pendulum   and biped stability, Mathematical Biosciences, (2) (1977)  95-110.
[34] D. Messuri, C. Klein, Automatic body regulation for maintaining stability of a legged vehicle   during   rough-terrain locomotion. Robotics  and  Automation, IEEE, 1(3) (1985) 141-132.
[35] S. A. A. Moosavian,  K. Alipour, Y. Bahramzadeh.   Dynamics   modeling and tip-over stability   of suspended wheeled mobile robots with multiple arms.  In intelligent   robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference, USA, 2007.
[36] A. Takhmar, MHS measure  for   postural  stability  monitoring  and   control   of   biped robots.  In Advanced intelligent Mechatronics, 2008 .AIM 2008. IEEE/ASME international Conference on, China, 2008.
[37] S. A. A. Moosavian, A. Takhmar. Stable Gait Planning for Humanoids Motion, in ISME, Iran, 2007.
[38] M. Mokhtari, M. Taghizadeh, M. Mazare, Optimal adaptive super twisting sliding mode control base on zero moment point stability criterion of a lower limb exoskeleton, Amir Kabir journal of mechanical engineering, 50 (4) (2020) 525-532(in Persian).
[39] M. Ruby, R. M. Botez, Trajectory Optimization for vertical navigation using the harmony search algorithm, IFAC-Papers On Line, 49 (17) (2016).
[40] H. Kawamoto, Y. Sankai, Power assist method based on phase sequence and muscle force condition for HAL, Advanced Robotics, 19(7) (2005) 717-734.
[41] P. K. Kyaw, K. Sandar, M. Khalid, W. Juan, Y. Li, Z. Chen, Opportunities in robotic exoskeletons hybrid assistive limb SUIT (MT5009), Robotic Exoskeletons: Becoming Economically Feasible, 21(1) (2013).
[42] N. Karavas, A. Ajoudani, N. Tsagarakis, Tele-impedance based assistive control for a compliant knee exoskeleton, Robotics and Autonomous Systems, 73 (2015) 78–90.
[43] Õ. S. Davis, P. A. DeLuca, M. J. Romness, Clinical Gait Analysis and Its Role in Treatment Decision-Making, Medscape Orthopaedics & Sports Medicine Journal, 2 (1998).
[44] Y. Farzaneh, A. Akbarzadeh, A. Akbari, New automated learning CPG for rhythmic patterns. Intelligent Service Robotics, 5(3) (2012) 169-177.
[45] T. Madani, B. Daachi, K. Djouani, Modular -Controller-Design-Based Fast Terminal Sliding Mode for Articulated Exoskeleton Systems, IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 25 (3) 2017.
[46]  J. Yang, J. Su, S. Li, X. Yu, High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach, IEEE Trans. Ind. Informt. 610 (2014) 604–614.
[47] R. C. Richardson, Actuation and control for robotic physiotherapy, PHD thesis, School of Mechanical Engineering University of Leeds, March 2001.
[48]P. N. Mousavi, A. Bagheri, Mathematical Simulation of a Seven Link Biped Robot on Various Surfaces and ZMP Considerations, Applied Mathematical Modeling, Elsevier, 31 (1) (2007) 18-37.