[1] A. Pirondi, N. Bonora, D. Steglich, W. Brocks, D. Hellmann, Simulation of failure under cyclic plastic loading by damage models, International Journal of Plasticity, 22(11) (2006) 2146-2170.
[2] C. Chow, X. Yang, A generalized mixed isotropic-kinematic hardening plastic model coupled with anisotropic damage for sheet metal forming, International Journal of damage mechanics, 13(1) (2004) 81-101.
[3] N. Bonora, G. Testa, A. Ruggiero, G. Iannitti, D. Gentile, Continuum damage mechanics modelling incorporating stress triaxiality effect on ductile damage initiation, Fatigue & Fracture of Engineering Materials & Structures, (2020).
[4] S. Chandrakanth, P.C. Pandey, An isotropic damage model for ductile material, Engineering Fracture Mechanics, 50(4) (1995) 457-465.
[5] N. Bonora, A nonlinear CDM model for ductile failure, Engineering Fracture Mechanics, 58(1) (1997) 11-28.
[6] Y. Lou, H. Huh, S. Lim, K. Pack, New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals, International Journal of Solids and Structures, 49(25) (2012) 3605-3615.
[7] Y. Lou, J.W. Yoon, H. Huh, Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality, International Journal of plasticity, 54 (2014) 56-80.
[8] Y. Lou, L. Chen, T. Clausmeyer, A.E. Tekkaya, J.W. Yoon, Modeling of ductile fracture from shear to balanced biaxial tension for sheet metals, International Journal of Solids and Structures, 112 (2017) 169-184.
[9] Y. Lou, H. Huh, Extension of a shear-controlled ductile fracture model considering the stress triaxiality and the Lode parameter, International Journal of Solids and Structures, 50(2) (2013) 447-455.
[10] Y. Lou, J.W. Yoon, A User-Friendly Anisotropic Ductile Fracture Criterion for Sheet Metal under Proportional Loading, International Journal of Solids and Structures, (2021).
[11] X. Zhuang, Y. Meng, Z. Zhao, Evaluation of prediction error resulting from using average state variables in the calibration of ductile fracture criterion, International Journal of Damage Mechanics, 27(8) (2018) 1231-1251.
[12] Y. Bao, T. Wierzbicki, On fracture locus in the equivalent strain and stress triaxiality space, International Journal of Mechanical Sciences, 46(1) (2004) 81-98.
[13] I. Barsoum, J. Faleskog, Rupture mechanisms in combined tension and shear—Experiments, International Journal of Solids and Structures, 44(6) (2007) 1768-1786.
[14] M. Brünig, O. Chyra, D. Albrecht, L. Driemeier, M. Alves, A ductile damage criterion at various stress triaxialities, International Journal of Plasticity, 24(10) (2008) 1731-1755.
[15] Y. Zhu, M.D. Engelhardt, A nonlocal triaxiality and shear dependent continuum damage model for finite strain elastoplasticity, European Journal of Mechanics-A/Solids, 71 (2018) 16-33.
[16] J.R. Rice, D.M. Tracey, On the ductile enlargement of voids in triaxial stress fields, Journal of the Mechanics and Physics of Solids, 17(3) (1969) 201-217.
[17] F. Yu, P.-Y.B. Jar, M.T. Hendry, Constitutive analysis of pressure-insensitive metals under axisymmetric tensile loading: A stress triaxiality-dependent plasticity damage model, International Journal of Mechanical Sciences, 142 (2018) 21-32.
[18] Y. Bai, T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence, International journal of plasticity, 24(6) (2008) 1071-1096.
[19] Y. Bai, T. Wierzbicki, Application of extended Mohr–Coulomb criterion to ductile fracture, International Journal of Fracture, 161(1) (2010) 1.
[20] L. Malcher, E. Mamiya, An improved damage evolution law based on continuum damage mechanics and its dependence on both stress triaxiality and the third invariant, International Journal of Plasticity, 56 (2014) 232-261.
[21] J. Lemaitre, A continuous damage mechanics model for ductile fracture, Journal of Engineering Materials and Technology, 107 (1985) 83-89.
[22] H. Liu, M. Fu, Prediction and analysis of ductile fracture in sheet metal forming—Part I: A modified Ayada criterion, International Journal of Damage Mechanics, 23(8) (2014) 1189-1210.
[23] M. Ayada, Central bursting in extrusion of inhomogeneous materials, in: Proceedings of 2nd International Conference on Technology for Plasticity, Stuttgart, 1987, 1987, pp. 553-558.
[24] T. Cao, J. Gachet, P. Montmitonnet, P. Bouchard, A Lode-dependent enhanced Lemaitre model for ductile fracture prediction at low stress triaxiality, Engineering Fracture Mechanics, 124 (2014) 80-96.
[25] N. Bonora, G. Testa, A. Ruggiero, G. Iannitti, G. Domenico, Modification of the Bonora damage model for shear failure, Frattura ed Integrità Strutturale, 12(44) (2018) 140-150.
[26] G. La Rosa, G. Mirone, A. Risitano, Effect of stress triaxiality corrected plastic flow on ductile damage evolution in the framework of continuum damage mechanics, Engineering Fracture Mechanics, 68(4) (2001) 417-434.
[27] Y. Bai, T. Wierzbicki, A comparative study of three groups of ductile fracture loci in the 3D space, Engineering Fracture Mechanics, 135 (2015) 147-167.
[28] M. Ganjiani, A damage model for predicting ductile fracture with considering the dependency on stress triaxiality and Lode angle, European Journal of Mechanics-A/Solids, (2020) 104048.
[29] M. Ganjiani, M. Homayounfard, Development of a ductile failure model sensitive to stress triaxiality and Lode angle, International Journal of Solids and Structures, 225 (2021) 111066.
[30] Z. Yue, K. Cao, H. Badreddine, K. Saanouni, J. Gao, Failure prediction on steel sheet under different loading paths based on fully coupled ductile damage model, International Journal of Mechanical Sciences, 153 (2019) 1-9.
[31] Y. Zhu, M.D. Engelhardt, Prediction of ductile fracture for metal alloys using a shear modified void growth model, Engineering Fracture Mechanics, 190 (2018) 491-513.
[32] F. Dunne, N. Petrinic, Introduction to computational plasticity, Oxford University Press on Demand, 2005.
[33] S. Li, I.J. Beyerlein, C.T. Necker, D.J. Alexander, M. Bourke, Heterogeneity of deformation texture in equal channel angular extrusion of copper, Acta materialia, 52(16) (2004) 4859-4875.
[34] Y. Bai, X. Teng, T. Wierzbicki, On the application of stress triaxiality formula for plane strain fracture testing, Journal of Engineering Materials and technology, 131(2) (2009).
[35] M. Ganjiani, A Nonlinear Damage Model of Hardening-Softening Materials, Journal of Engineering Materials and Technology, 140(1) (2018).
[36] Z. Li, F. Wei, P. La, H. Wang, Y. Wei, Enhancing Ductility of 1045 Nanoeutectic Steel Prepared by Aluminothermic Reaction through Annealing at 873 K, Advances in Materials Science and Engineering, 2017 (2017).
[37] A. Balankin, D. Morales, O. Susarrey, I. Campos, F. Sandoval, A. Bravo, A. García, M. Galicia, Fractal properties of fracture surfaces in steel 1045, International journal of fracture, 106(2) (2000) 21-26.
[38] E. Lach, H. Nahme, I. Rohr, Dynamic properties of nitrogen alloyed 1045 iron-carbon-steel, in: Journal de Physique IV (Proceedings), EDP sciences, 2003, pp. 857-862.
[39] C. Hua, D. Socie, Fatigue damage in 1045 steel under constant amplitude biaxial loading, Fatigue & Fracture of Engineering Materials & Structures, 7(3) (1984) 165-179.
[40] M. Lotfi, S. Amini, Effect of longitudinally intermittent movement of cutting tool in drilling of AISI 1045 steel: A three-dimensional numerical simulation, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(12) (2019) 4081-4090.
[41] X. Nan, L. Xie, W. Zhao, On the application of 3D finite element modeling for small-diameter hole drilling of AISI 1045 steel, The International Journal of Advanced Manufacturing Technology, 84(9) (2016) 1927-1939.
[42] A.A.O. Abduluyahed, Tensile stress-strain analysis of multiphase alloys, (1986).
[43] Y. Bai, X. Teng, T. Wierzbicki, On the application of stress triaxiality formula for plane strain fracture testing, Journal of Engineering Materials and technology, 131(2) (2009) 021002.
[44] Y. Bao, Dependence of ductile crack formation in tensile tests on stress triaxiality, stress and strain ratios, Engineering fracture mechanics, 72(4) (2005) 505-522.
[45] N. Bonora, G. Testa, A. Ruggiero, G. Iannitti, D. Gentile, Modification of the Bonora Damage Model for shear failure, Frattura ed Integrità Strutturale, 12(44) (2018) 140-150.
[46] J. Papasidero, V. Doquet, D. Mohr, Ductile fracture of aluminum 2024-تی351 under proportional and non-proportional multi-axial loading: Bao–Wierzbicki results revisited, International Journal of Solids and Structures, 69 (2015) 459-474.
[47] C.Y. Tang, J. Fan, C.P. Tsui, Prediction for forming limit of AL2024T3 sheet based on damage theory using finite element method, Acta Mechanica Solida Sinica, 19(2) (2006) 174-180.
[48] L. Xue, T. Wierzbicki, Ductile fracture characterization of aluminum alloy 2024-تی351 using damage plasticity theory, International Journal of Applied Mechanics, 1(02) (2009) 267-304.
[49] M. Mashayekhi, S. Ziaei-Rad, J. Parvizian, K. Nikbin, H. Hadavinia, Numerical analysis of damage evolution in ductile solids, Structural Durability & Health Monitoring, 1(1) (2005) 67.
[50] T. Holmquist, Strength and fracture characteristics of HY-80, HY-100, and HY-130 steels subjected to various strains, strain rates, temperatures, and pressures, HONEYWELL INC BROOKLYN PARK MN ARMAMENT SYSTEMS DIV, 1987.
[51] M. Schwartz, S. Aircraft, Welding, Brazing, and Soldering, volume 6 of ASM Metals Handbook, ASM Intl, (1993) 126-129.
[52] J.H. Giovanola, S.W. Kirkpatrick, J.E. Crocker, Fracture of geometrically scaled, notched three-point-bend bars of high strength steel, Engineering fracture mechanics, 62(2-3) (1999) 291-310.