[1] Z. Tang, A. Cheng, J.D. Achenbach, An ultrasonic technique to detect nonlinear behavior related to degradation of adhesive bonds, in: Review of Progress in Quantitative Nondestructive Evaluation, Springer, 1998, pp. 1347-1354.
[2] A. Pilarski, J.L. Rose, A transverse‐wave ultrasonic oblique‐incidence technique for interfacial weakness detection in adhesive bonds, Journal of Applied Physics, 63(2) (1988) 300-307.
[3] V. Kinra, V. Dayal, A new technique for ultrasonic-nondestructive evaluation of thin specimens, Experimental Mechanics, 28(3) (1988) 288-297.
[4] W. Kern, C. Spier, E. Hanneman, T. Miller, M. Matzner, T. Grogan, Neural cell adhesion molecule-positive peripheral T-cell lymphoma, (2011).
[5] A. Moidu, A. Sinclair, J. Spelt, A new ultrasonic technique for the interfacial characterization of adhesive joints, in: 1996 IEEE Ultrasonics Symposium. Proceedings, IEEE, 1996, pp. 757-760.
[6] C. Brotherhood, B. Drinkwater, S. Dixon, The detectability of kissing bonds in adhesive joints using ultrasonic techniques, Ultrasonics, 41(7) (2003) 521-529.
[7] H. Lamb, On waves in an elastic plate, Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character, 93(648) (1917) 114-128.
[8] P. Cawley, D. Alleyne, The use of Lamb waves for the long range inspection of large structures, Ultrasonics, 34(2-5) (1996) 287-290.
[9] J.L. Rose, Dispersion curves in guided wave testing, Materials Evaluation, 61(1) (2003) 20-22.
[10] A. Pilarski, J.L. Rose, Lamb wave mode selection concepts for interfacial weakness analysis, Journal of nondestructive evaluation, 11(3-4) (1992) 237-249.
[11] L. Singher, Y. Segal, E. Segal, J. Shamir, Considerations in bond strength evaluation by ultrasonic guided waves, The Journal of the Acoustical Society of America, 96(4) (1994) 2497-2505.
[12] V. Mustafa, A. Chahbaz, D.R. Hay, M. Brassard, S. Dubois, Imaging of disbond in adhesive joints with Lamb waves, in: Nondestructive Evaluation of Materials and Composites, International Society for Optics and Photonics, 1996, pp. 87-97.
[13] M.J. Lowe, D.N. Alleyne, P. Cawley, Defect detection in pipes using guided waves, Ultrasonics, 36(1-5) (1998) 147-154.
[14] M. Lowe, R. Challis, C. Chan, The transmission of Lamb waves across adhesively bonded lap joints, The Journal of the Acoustical Society of America, 107(3) (2000) 1333-1345.
[15] F.L. di Scalea, M. Bonomo, D. Tuzzeo, Ultrasonic guided wave inspection of bonded lap joints: Noncontact method and photoelastic visualization, Journal of Research in Nondestructive Evaluation, 13(3) (2001) 153-171.
[16] P.K. Puthillath, H. Kannajosyula, C.J. Lissenden, J.L. Rose, ULTRASONIC GUIDED WAVE INSPECTION OF ADHESIVE JOINTS: A PARAMETRIC STUDY FOR A STEP‐LAP JOINT, in: AIP Conference Proceedings, American Institute of Physics, 2009, pp. 1127-1133.
[17] B. Le Crom, M. Castaings, Shear horizontal guided wave modes to infer the shear stiffness of adhesive bond layers, The Journal of the Acoustical Society of America, 127(4) (2010) 2220-2230.
[18] C.P. Todd, R.E. Challis, Quantitative classification of adhesive bondline dimensions using Lamb waves and artificial neural networks, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 46(1) (1999) 167-181.
[19] U. Bork, R. Challis, Non-destructive evaluation of the adhesive fillet size in a T-peel joint using ultrasonic Lamb waves and a linear network for data discrimination, Measurement Science and Technology, 6(1) (1995) 72.
[20] M. Rautela, S. Gopalakrishnan, Ultrasonic guided wave based structural damage detection and localization using model assisted convolutional and recurrent neural networks, Expert Systems with Applications, 167 (2021) 114189.
[21] Y. Liu, Choose the best element size to yield accurate FEA results while reduce FE model's complexity, (2013).
[22] H. Salehi, R. Burgueño, Pattern recognition framework using asynchronous discrete binary data for condition and damage assessment in plate-like structures, Journal of Intelligent Material Systems and Structures, 30(8) (2019) 1200-1215.