سامانه آمارگیری سریع انبار توسط ریزپرنده مجهز به الگوریتم هدایت و ناوبری تصویری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دینامیک پرواز و کنترل، دانشکده مهندسی هوافضا، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 صنعتی امیرکبیر*مهندسی هوافضا

چکیده

مقاله حاضر، تلاشی است در راستای ادغام فنون بینایی رایانه و هدایت و کنترل پرنده‌های بدون سرنشین جهت طراحی و بهینه‌سازی یک مأموریت خودکار انجام‌شده توسط یک ریزپرنده، به نحوی که انجام خودکار مأموریت نسبت به انجام آن توسط انسان، به نحو قابل‌قبولی به‌صرفه‌تر باشد. سامانه‌ای جهت مدیریت فضای انبار به وسیله ریزپرنده مجهز به یک دوربین جلو ارائه گردیده‌است. الگوریتم‌های بینایی رایانه برای ریزپرنده امکان یافت موقعیت بسته‌ها، تأیید وجود یا عدم وجود یک بسته در انبار و آمارگیری کل انبار در زمان کوتاه را فراهم می‌سازد. روشی نوآورانه برای درک قفسه‌های انبار و بسته‌های موجود در آن توسط تصویر دوربین ارائه گردیده‌است که سامانه را قادر می‌سازد که به صورت آنی، ضمن انجام عمل آمارگیری از قفسه‌ها، مسیر حرکت بهینه را برای ریزپرنده تشخیص داده و سپس با پیروی از آن، مأموریت را در زمانی سریع‌تر نسبت به روش‌های هدایتی متداول کامل سازد. الگوریتم هدایتی طوری طراحی شده‌است که بازدهی عملیات خودکار نسبت به انجام عملیات توسط انسان به طور قابل‌توجهی افزایش یابد. سامانه مورد پیاده‌سازی قرارگرفته و داده خروجی آزمایش ارائه شده است. آزمایش‌ها حکایت از موفقیت سامانه در تأمین امنیت عملیات خودکار، ضمن کاهش زمان مأموریت دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Fast Warehouse Inventory Micro Aerial Vehicle System Equipped with Visual Guidance and Navigation Algorithm

نویسندگان [English]

  • hamidreza fahimi 1
  • Abolghasem Naghash 2
1 Flight Dynamics and Control, Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran
2 Department of Aerospace Engineering, Amirkabir University of Technology
چکیده [English]

This paper is an attempt to integrate computer vision techniques and micro aerial vehicle guidance to design and optimize an automated mission performed by a light micro aerial vehicle such that automating the mission becomes reasonably more efficient than performing it manually. A system is provided for warehouse management using a micro aerial vehicle equipped with a front camera. Computer vision algorithms make it possible for the micro aerial vehicle to locate packages, verify the presence or absence of a specified package and list the entire warehouse inventory in a short time. An innovative method is provided to detect shelves and their packages by the camera image, which enables the system to instantly plan the shortest path for the micro aerial vehicle while performing a shelf inventory listing. Then, following the planned path completes the mission faster than conventional guidance methods. The guidance algorithm is designed such that the efficiency of automatic operations compared to human operations is significantly increased. The system is first simulated and then implemented and the test output data is provided. The tests indicate the success of the system in securing automated operations while decreasing mission time.

کلیدواژه‌ها [English]

  • Computer vision
  • Micro aerial vehicle
  • Visual guidance
  • Warehouse robot
  • Path optimization
[1] R.F. Chapman, H.D. Mathias, Computer Vision Based Object Detection and Tracking in Micro Aerial Vehicles, Papers & Publications: Interdisciplinary Journal of Undergraduate Research, 5(1) (2016) 7.
[2] M. Neto, G. Eduardo, E. Silva, W. Caarls, Computer Vision Based Solutions for MAV Target Detection and Flight Control, in:  10th International Micro-Air Vehicles Conference, Melbourne, Australia, 2018.
[3] S. Wu, L. Gou, H. Xiong, X. Li, A Graph-based Approach for Rectangle Detection Using Corners, in:  Proceedings of the International Conference on Video and Image Processing, 2017, pp. 15-19.
[4] E.-S. Yang, G.-W. Kim, Robust quadrilateral detection method for using rectangle feature, in:  2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), IEEE, 2017, pp. 349-351.
[5] Z. Zhang, A. Ganesh, X. Liang, Y. Ma, TILT: Transform invariant low-rank textures, International journal of computer vision, 99(1) (2012) 1-24.
[6] Y. Bi, M. Lan, J. Li, S. Lai, B.M. Chen, A lightweight autonomous MAV for indoor search and rescue, Asian Journal of Control, 21(4) (2019) 1732-1744.
[7] M. Blösch, S. Weiss, D. Scaramuzza, R. Siegwart, Vision based MAV navigation in unknown and unstructured environments, in:  2010 IEEE International Conference on Robotics and Automation, IEEE, 2010, pp. 21-28.
[8] K. Schmid, T. Tomic, F. Ruess, H. Hirschmüller, M. Suppa, Stereo vision based indoor/outdoor navigation for flying robots, in:  2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2013, pp. 3955-3962.
[9] J. Marzat, J. Moras, A. Plyer, A. Eudes, P. Morin, Vision-based localization, mapping and control for autonomous MAV: EuRoC challenge results, in, 2015.
[10] C. Bills, J. Chen, A. Saxena, Autonomous MAV flight in indoor environments using single image perspective cues, in:  2011 IEEE International Conference on Robotics and Automation, IEEE, 2011, pp. 5776-5783.
[11] S. Zingg, D. Scaramuzza, S. Weiss, R. Siegwart, MAV navigation through indoor corridors using optical flow, in:  2010 IEEE International Conference on Robotics and Automation, IEEE, 2010, pp. 3361-3368.
[12] S.L. Smith, M. Schwager, D. Rus, Persistent robotic tasks: Monitoring and sweeping in changing environments, IEEE Transactions on Robotics, 28(2) (2011) 410-426.
[13] N. Mathew, S.L. Smith, S.L. Waslander, Planning paths for package delivery in heterogeneous multirobot teams, IEEE Transactions on Automation Science and Engineering, 12(4) (2015) 1298-1308.
[14] M. Popp, S. Prophet, G. Scholz, G. Trommer, A novel guidance and navigation system for MAVs capable of autonomous collision-free entering of buildings, Gyroscopy and Navigation, 6(3) (2015) 157-165.
[15] W.G. Aguilar, V.P. Casaliglla, J.L. Polit, Obstacle avoidance based-visual navigation for micro aerial vehicles, Electronics, 6(1) (2017) 10.
[16] A. De Falco, F. Narducci, An UAV autonomous warehouse inventorying by deep learning, in:  International Conference on Image Analysis and Processing, Springer, 2019, pp. 443-453.
[17] F. Guérin, F. Guinand, Towards an autonomous warehouse inventory scheme, in:  2016 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2016, pp. 1-8.
[18] T.M. Fernández-Caramés, O. Blanco-Novoa, A UAV and blockchain-based system for inventory and traceability applications in big data-driven supply chain management, Sensors, 19(10) (2019) 2394.
[19] N. Macoir, J. Bauwens, Uwb localization with battery-powered wireless backbone for drone-based inventory management, Sensors, 19(3) (2019) 467.
[20] D. Saha, G.S.B. Udayagiri, P. Agarwal, B. Ghosh, S. Kumar, Warehouse Management Using Real-Time QR-Code and Text Detection.
[21] I. Kalinov, A. Petrovsky, Cnn barcode detection-based uav trajectory optimization for autonomous warehouse stocktaking, IEEE Robotics and Automation Letters, 5(4) (2020) 6647-6653.
[22] M. Maurer, J. Pestana, Towards an autonomous vision-based inventory drone, in:  2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018.
[23] D. Cristiani, F. Bottonelli, Inventory Management through Mini-Drones: Architecture and P-o-C Implementation, in:  2020 IEEE 21st International Symposium on" A World of Wireless Networks", IEEE, 2020, pp. 317-322.
[24] T. Bresciani, Modelling, identification and control of a quadrotor helicopter, MSc Theses,  (2008).
[25] E. Donald, KIRK,“Optimal Control Theory”, AN INTRODUCTION,  (1970).