[1] Chakraborty, P.K. Panigrahi, Stability of nanofluid: A review, Applied Thermal Engineering, 174 (2020) 115259.
[2] Mahbubul, R. Saidur, M. Amalina, Latest developments on the viscosity of nanofluids, International Journal of Heat and Mass Transfer, 55(4) (2012) 874-885.
[3] Dey, P. Kumar, S. Samantaray, A review of nanofluid preparation, stability, and thermo‐physical properties, Heat Transfer—Asian Research, 46(8) (2017) 1413-1442.
[4] S. Sundar, K. Sharma, M. Naik, M.K. Singh, Empirical and theoretical correlations on viscosity of nanofluids: a review, Renewable and sustainable energy reviews, 25 (2013) 670-686.
[5] R. Satti, D.K. Das, D. Ray, Investigation of the thermal conductivity of propylene glycol nanofluids and comparison with correlations, International Journal of Heat and Mass Transfer, 107 (2017) 871-881.
[6] Tan, Y. Zhang, B. Wei, C. Zou, Experimental investigation on optical and thermal properties of propylene glycol–water based nanofluids for direct absorption solar collectors, Applied Physics A, 124(8) (2018) 1-10.
[7] Moayedi, Numerical analysis of the effect of configurations of double rotating cylinders on heat transfer enhancement hybrid nanofluid flow in a vented cavity, Amirkabir journal of mechanical engineering, 2021.
[8] Sekrani, S. Poncet, Ethylene-and propylene-glycol based nanofluids: a litterature review on their thermophysical properties and thermal performances, Applied Sciences, 8(11) (2018) 2311.
[9] Jabbari , A.Rajabpour, S.Saedodin , nvestigation Dynamic Viscosity of Water-Single Wall Carbon Nanotube Nanofluid and Its Effective Factors By Molecular Dynamics Simulation, Amirkabir journal of mechanical engineering, 51(4)(2019) 91-100.
[10] H. Esfe, The investigation of effects of temperature and nanoparticles volume fraction on the viscosity of copper oxide-ethylene glycol nanofluids, Periodica Polytechnica Chemical Engineering, 62(1) (2018) 43-50.
[11] Kazemi, M. Sefid, M. Afrand, A novel comparative experimental study on rheological behavior of mono & hybrid nanofluids concerned graphene and silica nano-powders: Characterization, stability and viscosity measurements, Powder Technology, 366 (2020) 216-229.
[12] Atashrouz, M. Mozaffarian, G. Pazuki, Viscosity and rheological properties of ethylene glycol+ water+ Fe 3 O 4 nanofluids at various temperatures: Experimental and thermodynamics modeling, Korean Journal of Chemical Engineering, 33(9) (2016) 2522-2529.
[13] Aladag, S. Halelfadl, N. Doner, T. Maré, S. Duret, P. Estellé, Experimental investigations of the viscosity of nanofluids at low temperatures, Applied energy, 97 (2012) 876-880.
[14] P. Kulkarni, D.K. Das, S.L. Patil, Effect of temperature on rheological properties of copper oxide nanoparticles dispersed in propylene glycol and water mixture, Journal of Nanoscience and Nanotechnology, 7(7) (2007) 2318-2322.
[15] K. Namburu, D.P. Kulkarni, D. Misra, D.K. Das, Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture, Experimental Thermal and Fluid Science, 32(2) (2007) 397-402.
[16] Naik, G.R. Janardhana, K.V.K. Reddy, B.S. Reddy, Experimental investigation into rheological property of copper oxide nanoparticles suspended in propylene glycol–water based fluids, ARPN J. Eng. Appl. Sci, 5(6) (2010) 29-34.
[17] Banisharif, M. Aghajani, S. Van Vaerenbergh, P. Estellé, A. Rashidi, Low Temperature Viscosity of Nanofluids with Water: Ethylene Glycol Base Fluid, in: 1st International Conference on Nanofluids (ICNf2019) & 2nd European Symposium on Nanofluids (ESNf2019), 2019.
[18] P. Kulkarni, D.K. Das, R.S. Vajjha, Application of nanofluids in heating buildings and reducing pollution, Applied Energy, 86(12) (2009) 2566-2573.
[19] A. Standard, Standard Test Method for Aerodynamic Acceptance of SAE AMS 1424 and SAE AMS 1428 Aircraft Deicing/Anti-icing Fluids, AS5900 Rev. A.(2003).
[20] K. Thomas, R.P. Cassoni, C.D. MacArthur, Aircraft anti-icing and de-icing techniques and modeling, Journal of aircraft, 33(5) (1996) 841-854.
[21] Salih, J. Salimon, E. Yousif, The physicochemical and tribological properties of oleic acid based triester biolubricants, Industrial Crops and Products, 34(1) (2011) 1089-1096.
[22] R. Lide, Hardness of minerals and ceramics, CRC Handbook of Chemistry and Physics, (2005) 2313-2314.
[23] Banisharif, M. Aghajani, S. Van Vaerenbergh, P. Estellé, A. Rashidi, Thermophysical properties of water ethylene glycol (WEG) mixture-based Fe3O4 nanofluids at low concentration and temperature, Journal of Molecular Liquids, 302 (2020) 112606.
[24] Y. Zhou, Q.Q. Di, B. Liu, X.Y. Ma, B.H. Cai, Experimental study on the surface tension of Al2O3-H2O nanofluid, in: Materials Science Forum, Trans Tech Publ, 2016, pp. 394-400.
[25] Lu, Y.-Y. Duan, X.-D. Wang, Surface tension, viscosity, and rheology of water-based nanofluids: a microscopic interpretation on the molecular level, Journal of nanoparticle research, 16(9) (2014) 1-11.
[26] Afrand, D. Toghraie, B. Ruhani, Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: an experimental study, Experimental Thermal and Fluid Science, 77 (2016) 38-44.
[27] W. Xian, N.A.C. Sidik, S.R. Aid, T.L. Ken, Y. Asako, Review on preparation techniques, properties and performance of hybrid nanofluid in recent engineering applications, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 45(1) (2018) 1-13.
[28] Owen, H. Kennedy, ASHRAE Handbook–Fundamentals (IP Edition), American Society of Heating, Refrigerating and Air-Conditioning Engineers: Inc(2009).
[29] D. Shelke, A.S. Rajbhoj, M.S. Nimase, G.A. Tikone, B.H. Zaware, S.S. Jadhav, An efficient, solvent free one pot synthesis of tetrasubstitued imidazoles catalyzed by nanocrystalline γ-alumina, Orient. J. Chem, 32(4) (2016) 2007-2014.
[30] Á.B. Sifontes, B. Gutierrez, A. Mónaco, A. Yanez, Y. Díaz, F.J. Méndez, L. Llovera, E. Cañizales, J.L. Brito, Preparation of functionalized porous nano-γ-Al2O3 powders employing colophony extract, Biotechnology Reports, 4 (2014) 21-29.
[31] K. Darban, Y. Kianinia, E. Taheri-Nassaj, Synthesis of nano-alumina powder from impure kaolin and its application for arsenite removal from aqueous solutions, Journal of Environmental Health Science and Engineering, 11(1) (2013) 1-11.
[32] Sayah, F. Habelhames, A. Bahloul, B. Nessark, Y. Bonnassieux, D. Tendelier, M. El Jouad, Electrochemical synthesis of polyaniline-exfoliated graphene composite films and their capacitance properties, Journal of Electroanalytical Chemistry, 818 (2018) 26-34.
[33] Siburian, H. Sihotang, S.L. Raja, M. Supeno, C. Simanjuntak, New route to synthesize of graphene nano sheets, Oriental Journal of Chemistry, 34(1) (2018) 182.
[34] Zainon, W. Azmi, Recent Progress on Stability and Thermo-Physical Properties of Mono and Hybrid towards Green Nanofluids, Micromachines, 12(2) (2021) 176.
[35] W. Xian, N.A.C. Sidik, R. Saidur, Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids, International Communications in Heat and Mass Transfer, 110 (2020) 104389.
[36] Rubbi, L. Das, K. Habib, N. Aslfattahi, R. Saidur, M.T. Rahman, State-of-the-art review on water-based nanofluids for low temperature solar thermal collector application, Solar Energy Materials and Solar Cells, 230 (2021) 111220.
[37] Rubbi, K. Habib, R. Saidur, N. Aslfattahi, S.M. Yahya, L. Das, Performance optimization of a hybrid PV/T solar system using Soybean oil/MXene nanofluids as A new class of heat transfer fluids, Solar Energy, 208 (2020) 124-138.