مطالعه رفتار رئولوژیکی نانوسیال هیبریدی آب-اتیلن گلیکول/نانوآلومینا-نانوگرافن در دماهای پایین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده فناوری و مهندسی، پژوهشگاه استاندارد، البرز، ایران

2 دانشکده فنی و مهندسی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

نانوسیالات که از توزیع ذرات با ابعاد نانو در سیال پایه حاصل می‌شوند، نسل جدیدی از سیالات با پتانسیل بسیار بالا در کاردبرد‌های صنعتی هستند. در این پژوهش، تأثیر دما و غلظت نانوذرات متشکل از نانوذرات آلومینا و نانوصفحات گرافن بر رفتار رئولوژیکی سیال پایه متشکل از آب و اتیلن گلیکول مورد مطالعه قرار گرفت. همچنین به میزان 0/2 درصد حجمی اولئیک اسید و 0/2درصد وزنی سدیم دودسیل سولفونات به عنوان ماده فعال سطحی برای پراکندگی نانوذرات به سیال پایه اضافه شدند. کسرحجمی نانوذرات 0/05، 0/1، 0/5، 1، 1/5، 2 و 2/5 درصد حجمی و دماهای مورد آزمایش در بازه دمائی 293-263 کلوین انتخاب شد. بررسی مورفولوژی و ریزساختار نانوذرات توسط میکروسکوپ الکترونی روبشی و میکروسکوپ الکترونی عبوری انجام شد. تشخیص فازهای نانوذرات به وسیله آنالیز تفرق اشعه ایکس انجام شد. همچنین مساحت ویژه و تخلخل نانوذرات تعیین شد. ویسکوزیته دینامیک نانوسیالات هیبریدی اندازه‌گیری و با سیال پایه مقایسه شد. نتایج نشان داد که خصوصیات رئولوژیکی نانوسیال خصوصاً در دماهای زیر صفر به دما و غلظت نانوذرات وابسته است. نمونه‌های نانوسیال هیبریدی با کسرهای حجمی جامد کمتر از0/5% رفتار نیوتنی داشتند، در حالی که نمونه‌های با کسرهای حجمی جامد بالاتر رفتار غیر نیوتنی رقیق‌گردانی برش را نشان می‌دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of Rheological Behavior of Water-Ethylene Glycol /Nano Al2O3 –Nano Graphene Hybrid Nanofluid at Low Temperatures

نویسندگان [English]

  • nasim nayebpashaee 1
  • Seyed Mohamad Mehdi Hadavi 2
1 Department of Metallurgy and Mechanical Engineering, Technology and Engineering Research Center, Standard Research Institute (SRI)
2 Corrosion Group, Faculty of Engineering, Tarbiat Modares University
چکیده [English]

Nanofluids are a new generation of fluids with very high potential in industrial applications. In this study, the effect of temperature and concentration of nanoparticles consisting of Al2O3 nanoparticles and graphene nanoplates on the rheological behavior of the base fluid consisting of water and ethylene glycol was studied. Also, 0.2%vol. of oleic acid and 0.2%wt. of sodium dodecyl sulfonate were added to the base fluid as a surfactant to disperse the nanoparticles. The volume fraction of nanoparticles in this study was considered 0.05, 0.1, 0.5, 1, 1.5, 2, and 2.5% by volume, and also to investigate the effect of temperature, the tested temperatures were selected in the temperature range of 263-293K. The morphology and microstructure of the nanoparticles were investigated by scanning and transmission electron microscopy. Detection of phases in nanoparticles was performed by X-Ray Diffraction analysis. Also, the specific area and porosity of nanoparticles were determined. The dynamic viscosity of hybrid nanofluids was measured and compared with the base fluid. The results showed that the rheological properties of nanofluid were dependent on temperature and nanoparticle concentration, especially at sub-zero temperatures. Hybrid nanofluid samples with solid volume fraction less than 0.5% showed Newtonian behavior, while samples with higher solid volume fractions showed non-Newtonian shear thinning behavior.

کلیدواژه‌ها [English]

  • Hybrid nanofluid
  • Ethylene glycol
  • Viscosity
  • Alumina nanoparticles
  • Graphene nanoplates
[1] Chakraborty, P.K. Panigrahi, Stability of nanofluid: A review, Applied Thermal Engineering, 174 (2020) 115259.
[2] Mahbubul, R. Saidur, M. Amalina, Latest developments on the viscosity of nanofluids, International Journal of Heat and Mass Transfer, 55(4) (2012) 874-885.
[3] Dey, P. Kumar, S. Samantaray, A review of nanofluid preparation, stability, and thermo‐physical properties, Heat Transfer—Asian Research, 46(8) (2017) 1413-1442.
[4] S. Sundar, K. Sharma, M. Naik, M.K. Singh, Empirical and theoretical correlations on viscosity of nanofluids: a review, Renewable and sustainable energy reviews, 25 (2013) 670-686.
[5] R. Satti, D.K. Das, D. Ray, Investigation of the thermal conductivity of propylene glycol nanofluids and comparison with correlations, International Journal of Heat and Mass Transfer, 107 (2017) 871-881.
[6] Tan, Y. Zhang, B. Wei, C. Zou, Experimental investigation on optical and thermal properties of propylene glycol–water based nanofluids for direct absorption solar collectors, Applied Physics A, 124(8) (2018) 1-10.
[7] Moayedi, Numerical analysis of the effect of configurations of double rotating cylinders on heat transfer enhancement hybrid nanofluid flow in a vented cavity, Amirkabir journal of mechanical engineering, 2021.
[8] Sekrani, S. Poncet, Ethylene-and propylene-glycol based nanofluids: a litterature review on their thermophysical properties and thermal performances, Applied Sciences, 8(11) (2018) 2311.
[9] Jabbari , A.Rajabpour, S.Saedodin , nvestigation Dynamic Viscosity of Water-Single Wall Carbon Nanotube Nanofluid and Its Effective Factors By Molecular Dynamics Simulation, Amirkabir journal of mechanical engineering, 51(4)(2019) 91-100.
[10] H. Esfe, The investigation of effects of temperature and nanoparticles volume fraction on the viscosity of copper oxide-ethylene glycol nanofluids, Periodica Polytechnica Chemical Engineering, 62(1) (2018) 43-50.
[11] Kazemi, M. Sefid, M. Afrand, A novel comparative experimental study on rheological behavior of mono & hybrid nanofluids concerned graphene and silica nano-powders: Characterization, stability and viscosity measurements, Powder Technology, 366 (2020) 216-229.
[12] Atashrouz, M. Mozaffarian, G. Pazuki, Viscosity and rheological properties of ethylene glycol+ water+ Fe 3 O 4 nanofluids at various temperatures: Experimental and thermodynamics modeling, Korean Journal of Chemical Engineering, 33(9) (2016) 2522-2529.
[13] Aladag, S. Halelfadl, N. Doner, T. Maré, S. Duret, P. Estellé, Experimental investigations of the viscosity of nanofluids at low temperatures, Applied energy, 97 (2012) 876-880.
[14] P. Kulkarni, D.K. Das, S.L. Patil, Effect of temperature on rheological properties of copper oxide nanoparticles dispersed in propylene glycol and water mixture, Journal of Nanoscience and Nanotechnology, 7(7) (2007) 2318-2322.
[15] K. Namburu, D.P. Kulkarni, D. Misra, D.K. Das, Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture, Experimental Thermal and Fluid Science, 32(2) (2007) 397-402.
[16] Naik, G.R. Janardhana, K.V.K. Reddy, B.S. Reddy, Experimental investigation into rheological property of copper oxide nanoparticles suspended in propylene glycol–water based fluids, ARPN J. Eng. Appl. Sci, 5(6) (2010) 29-34.
[17] Banisharif, M. Aghajani, S. Van Vaerenbergh, P. Estellé, A. Rashidi, Low Temperature Viscosity of Nanofluids with Water: Ethylene Glycol Base Fluid, in:  1st International Conference on Nanofluids (ICNf2019) & 2nd European Symposium on Nanofluids (ESNf2019), 2019.
[18] P. Kulkarni, D.K. Das, R.S. Vajjha, Application of nanofluids in heating buildings and reducing pollution, Applied Energy, 86(12) (2009) 2566-2573.
[19] A. Standard, Standard Test Method for Aerodynamic Acceptance of SAE AMS 1424 and SAE AMS 1428 Aircraft Deicing/Anti-icing Fluids, AS5900 Rev. A.(2003).
[20] K. Thomas, R.P. Cassoni, C.D. MacArthur, Aircraft anti-icing and de-icing techniques and modeling, Journal of aircraft, 33(5) (1996) 841-854.
[21] Salih, J. Salimon, E. Yousif, The physicochemical and tribological properties of oleic acid based triester biolubricants, Industrial Crops and Products, 34(1) (2011) 1089-1096.
[22] R. Lide, Hardness of minerals and ceramics, CRC Handbook of Chemistry and Physics,  (2005) 2313-2314.
[23] Banisharif, M. Aghajani, S. Van Vaerenbergh, P. Estellé, A. Rashidi, Thermophysical properties of water ethylene glycol (WEG) mixture-based Fe3O4 nanofluids at low concentration and temperature, Journal of Molecular Liquids, 302 (2020) 112606.
[24] Y. Zhou, Q.Q. Di, B. Liu, X.Y. Ma, B.H. Cai, Experimental study on the surface tension of Al2O3-H2O nanofluid, in:  Materials Science Forum, Trans Tech Publ, 2016, pp. 394-400.
[25] Lu, Y.-Y. Duan, X.-D. Wang, Surface tension, viscosity, and rheology of water-based nanofluids: a microscopic interpretation on the molecular level, Journal of nanoparticle research, 16(9) (2014) 1-11.
[26] Afrand, D. Toghraie, B. Ruhani, Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: an experimental study, Experimental Thermal and Fluid Science, 77 (2016) 38-44.
[27] W. Xian, N.A.C. Sidik, S.R. Aid, T.L. Ken, Y. Asako, Review on preparation techniques, properties and performance of hybrid nanofluid in recent engineering applications, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 45(1) (2018) 1-13.
[28] Owen, H. Kennedy, ASHRAE Handbook–Fundamentals (IP Edition), American Society of Heating, Refrigerating and Air-Conditioning Engineers: Inc(2009).
[29] D. Shelke, A.S. Rajbhoj, M.S. Nimase, G.A. Tikone, B.H. Zaware, S.S. Jadhav, An efficient, solvent free one pot synthesis of tetrasubstitued imidazoles catalyzed by nanocrystalline γ-alumina, Orient. J. Chem, 32(4) (2016) 2007-2014.
[30] Á.B. Sifontes, B. Gutierrez, A. Mónaco, A. Yanez, Y. Díaz, F.J. Méndez, L. Llovera, E. Cañizales, J.L. Brito, Preparation of functionalized porous nano-γ-Al2O3 powders employing colophony extract, Biotechnology Reports, 4 (2014) 21-29.
[31] K. Darban, Y. Kianinia, E. Taheri-Nassaj, Synthesis of nano-alumina powder from impure kaolin and its application for arsenite removal from aqueous solutions, Journal of Environmental Health Science and Engineering, 11(1) (2013) 1-11.
[32] Sayah, F. Habelhames, A. Bahloul, B. Nessark, Y. Bonnassieux, D. Tendelier, M. El Jouad, Electrochemical synthesis of polyaniline-exfoliated graphene composite films and their capacitance properties, Journal of Electroanalytical Chemistry, 818 (2018) 26-34.
[33] Siburian, H. Sihotang, S.L. Raja, M. Supeno, C. Simanjuntak, New route to synthesize of graphene nano sheets, Oriental Journal of Chemistry, 34(1) (2018) 182.
[34] Zainon, W. Azmi, Recent Progress on Stability and Thermo-Physical Properties of Mono and Hybrid towards Green Nanofluids, Micromachines, 12(2) (2021) 176.
[35] W. Xian, N.A.C. Sidik, R. Saidur, Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids, International Communications in Heat and Mass Transfer, 110 (2020) 104389.
[36] Rubbi, L. Das, K. Habib, N. Aslfattahi, R. Saidur, M.T. Rahman, State-of-the-art review on water-based nanofluids for low temperature solar thermal collector application, Solar Energy Materials and Solar Cells, 230 (2021) 111220.
[37] Rubbi, K. Habib, R. Saidur, N. Aslfattahi, S.M. Yahya, L. Das, Performance optimization of a hybrid PV/T solar system using Soybean oil/MXene nanofluids as A new class of heat transfer fluids, Solar Energy, 208 (2020) 124-138.