[1] C. Liang, X. Lingling, S. Hongbo, Z. Zhibin, Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system, Energy Conversion and Management, 50(3) (2009) 723-729.
[2] J.M. Mahdi, S. Lohrasbi, D.D. Ganji, E.C. Nsofor, Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger, International Journal of Heat and Mass Transfer, 124 (2018) 663-676.
[3] H. Xu, N. Wang, C. Zhang, Z. Qu, M. Cao, Optimization on the melting performance of triplex-layer PCMs in a horizontal finned shell and tube thermal energy storage unit, Applied Thermal Engineering, 176 (2020) 115409.
[4] F. Li, M. Sheikholeslami, R.N. Dara, M. Jafaryar, A. Shafee, T. Nguyen-Thoi, Z. Li, Numerical study for nanofluid behavior inside a storage finned enclosure involving melting process, Journal of Molecular Liquids, 297 (2020) 111939.
[5] A.A.R. Darzi, M. Jourabian, M. Farhadi, Melting and solidification of PCM enhanced by radial conductive fins and nanoparticles in cylindrical annulus, Energy conversion and management, 118 (2016) 253-263.
[6] K. Bhagat, M. Prabhakar, S.K. Saha, Estimation of thermal performance and design optimization of finned multitube latent heat thermal energy storage, Journal of Energy Storage, 19 (2018) 135-144.
[7] K. Hosseinzadeh, M. Alizadeh, M. Alipour, B. Jafari, D. Ganji, Effect of nanoparticle shape factor and snowflake crystal structure on discharging acceleration LHTESS containing (Al2O3‐GO) HNEPCM, Journal of Molecular Liquids, 289 (2019) 111140.
[8] M.R. Hajizadeh, F. Selimefendigil, T. Muhammad, M. Ramzan, H. Babazadeh, Z. Li, Solidification of PCM with nano powders inside a heat exchanger, Journal of Molecular Liquids, 306 (2020) 112892.
[9] M.R. Hajizadeh, A.N. Keshteli, Q.-V. Bach, Solidification of PCM within a tank with longitudinal-Y shape fins and CuO nanoparticle, Journal of Molecular Liquids, 317 (2020) 114188.
[10] N.S. Bondareva, B. Buonomo, O. Manca, M.A. Sheremet, Heat transfer performance of the finned nano-enhanced phase change material system under the inclination influence, International Journal of Heat and Mass Transfer, 135 (2019) 1063-1072.
[11] S. Wu, H. Wang, S. Xiao, D. Zhu, Numerical simulation on thermal energy storage behavior of Cu/paraffin nanofluids PCMs, Procedia Engineering, 31 (2012) 240-244.
[12] J.M. Mahdi, H.I. Mohammed, E.T. Hashim, P. Talebizadehsardari, E.C. Nsofor, Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system, Applied Energy, 257 (2020) 113993.
[13] M. Fang, G. Chen, Effects of different multiple PCMs on the performance of a latent thermal energy storage system, Applied Thermal Engineering, 27(5-6) (2007) 994-1000.
[14] H.A. Adine, H. El Qarnia, Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials, Applied mathematical modelling, 33(4) (2009) 2132-2144.
[15] Z. Hu, A. Li, R. Gao, H. Yin, Enhanced heat transfer for PCM melting in the frustum-shaped unit with multiple PCMs, Journal of Thermal Analysis and Calorimetry, 120(2) (2015) 1407-1416.
[16] G.B. Kim, J.M. Hyun, H.S. Kwak, Transient buoyant convection of a power-law non-Newtonian fluid in an enclosure, International journal of heat and mass transfer, 46(19) (2003) 3605-3617.
[17] O. Turan, J. Lai, R.J. Poole, N. Chakraborty, Laminar natural convection of power-law fluids in a square enclosure submitted from below to a uniform heat flux density, Journal of Non-Newtonian Fluid Mechanics, 199 (2013) 80-95.
[18] M. Shojaeian, M. Yildiz, A. Koşar, Convective heat transfer and second law analysis of non-Newtonian fluid flows with variable thermophysical properties in circular channels, International Communications in Heat and Mass Transfer, 60 (2015) 21-31.
[19] L. Vesjolaja, J.M. Bujalski, K. Vaagsaether, CFD Simulation of Solidification of non-Newtonian Fluid Flowing in a Complex Geometry Pipeline in Turbulent Flow Regime, (2018).
[20] T. Myers, J. Low, Modelling the solidification of a power-law fluid flowing through a narrow pipe, International journal of thermal sciences, 70 (2013) 127-131.
[21] R. Karami, B. Kamkari, Investigation of the effect of inclination angle on the melting enhancement of phase change material in finned latent heat thermal storage units, Applied Thermal Engineering, 146 (2019) 45-60.
[22] S. Motahar, N. Nikkam, A.A. Alemrajabi, R. Khodabandeh, M.S. Toprak, M. Muhammed, A novel phase change material containing mesoporous silica nanoparticles for thermal storage: a study on thermal conductivity and viscosity, International Communications in Heat and Mass Transfer, 56 (2014) 114-120.
[23] H. Shokouhmand, B. Kamkari, Experimental investigation on melting heat transfer characteristics of lauric acid in a rectangular thermal storage unit, Experimental Thermal and Fluid Science, 50 (2013) 201-212.
[24] S. Mehryan, M. Vaezi, M. Sheremet, M. Ghalambaz, Melting heat transfer of power-law non-Newtonian phase change nano-enhanced n-octadecane-mesoporous silica (MPSiO2), International Journal of Heat and Mass Transfer, 151 (2020) 119385.