[1] J.F. Rhoads, S.W. Shaw, K.L. Turner, The nonlinear response of resonant microbeam systems with purely-parametric electrostatic actuation, J. Micromech. Microeng., 16 (2006) 890-899.
[2] J.A. Pelesko, Mathematical modeling of electrostatic MEMS with tailored dielectric properties, SIAM J. Appl. Math., 62(3) (2002) 888-908.
[3] P.M. Osterberg, Electrostatically Actuated Microelectromechanical Test Structures for Material Property Measurement, Massachusetts Institute of Technology, 1995.
[4] G.I. Taylor, The coalescence of closely spaced drops when they are at different electric potentials, Proc. of Roy. Soc. A. 306, (1968) 423-434.
[5] H.C. Nathanson, W.E. Newell, R.A. Wickstrom, J.R. Davis, The resonant gate transistor, IEEE T. Electron. Dev., 14(3) (1967) 117-133.
[6] S. Krylov, N. Dick, Dynamic stability of electrostatically actuated initially curved shallow micro beams, Continuum Mech. Therm., 22(6) (2010) 445-468.
[7] B. Sajadi, H. Goosen, F.v. Keulen, Bi-stability of micro-plates: A sensitive mechanism for differential pressure measurements, Appl. Phys. Lett., 111(12) (2017) 124101.
[8] A.R. Askari, Bi-stability of pressurized electrically actuated flat micro-plates, International Journal of Solids and Structures, 178-179 (2019) 167 - 179.
[9] N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity: theory and experiment, Acta Metall. Mater., 42 (1994) 475–487.
[10] D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, 51 (2003) 1477-1508.
[11] F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39 (2002) 2731-2743.
[12] M.H. Kahrobaiyan, M. Asghari, M.T. Ahmadian, Strain gradient beam element, Finite Elem. Anal. Des. , 68 (2013) 63–75.
[13] M. Asghari, Geometrically nonlinear micro-plate formulation based on the modified couple stress theory, int. J. Eng. Sci., 51 (2012) 292–309.
[14] M. Tahani, A.R. Askari, Y. Mohandes, B. Hassani, Size-dependent free vibration analysis of electrostatically pre-deformed rectangular micro-plates based on the modified couple stress theory, Int. J. Mech. Sci., 94-95 (2015) 185-198.
[15] A.R. Askari, M. Tahani, Presenting a size-dependent electro-mechanical model for rectangular plates-based resonant micro-sensors based on modified couple stress theory, J. Modares Mechanical Engineering, 14(8) (2014) 121-130.
[16] X. Zhao, E.M. Abdel-Rahman, A.H. Nayfeh, A reduced-order model for electrically actuated microplates, J. Micromech. Microeng. , 14 (2004) 900–906.
[17] K.F. Wang, T. Kitamura, B. Wang, Nonlinear pull-in instability and free vibration of micro/nanoscale plates with surface energy – A modified couple stress theory model, Int. J. Mech. Sci., 99 (2015) 288-296.
[18] R.C. Batra, M. Porfiri, D. Spinello, Reduced-order models for microelectromechanical rectangular and circular plates incorporating the Casimir force, Int. J. Solids Struct., 45 (2008) 3558-3583.
[19] A.R. Askari, M. Tahani, Size-dependent dynamic pull-in analysis of geometric non-linear micro-plates based on the modified couple stress theory, Physica E, 86 (2017) 262-274.
[20] A. Kazemi, R. Vatankhah, M. Farid, Nonlinear pull-in instability of microplates with piezoelectric layers using modified couple stress theory, International Journal of Mechanical Sciences, 130 (2017) 90-98.
[21] M.H. Ghayesh, H. Farokhi, Nonlinear dynamics of microplates, Int. J. Eng. Sci., 86 (2015) 60-73.
[22] M.H. Ghayesh, H. Farokhi, Coupled size-dependent behavior of shear deformable microplates, Acta Mech., 227(3) (2016) 757-775.
[23] H. Farokhi, M.H. Ghayesh, Modal interactions in primary and subharmonic resonant dynamics of imperfect microplates with geometric nonlinearities, Acta Mech. Sin., (2015) 1-12.
[24] H. Farokhi, M.H. Ghayesh, Nonlinear size-dependent dynamics of an imperfect shear deformable microplate, J. Sound Vib., 361 (2016) 226-242.
[25] H. Farokhi, M.H. Ghayesh, Nonlinear mechanics of electrically actuated microplates, Int. J. Eng. Sci., 123 (2018) 197-213.
[26] H. Raeisifard, M.N. Bahrami, A. Yousefi-Koma, H.R. Fard, Static characterization and pull-in voltage of a micro-switch under both electrostatic and piezoelectric excitations, European Journal of Mechanics-A/Solids, 44 (2014) 116-124.
[27] M.N. Bahrami, A. Yousefi-Koma, H. Raeisifard, Modeling and nonlinear analysis of a micro-switch under electrostatic and piezoelectric excitations with curvature and piezoelectric nonlinearities, Journal of Mechanical Science and Technology, 28(1) (2014) 263-272.
[28] G. Rezazadeh, A. Tahmasebi, M. Zubstov, Application of piezoelectric layers in electrostatic MEM actuators: controlling of pull-in voltage, Microsystem technologies, 12(12) (2006) 1163-1170.
[29] R.C. Batra, M. Porfiri, D. Spinello, Review of modeling electrostatically actuated microelectromechanical systems, Smart Mater. Struct., 16 (2007) 23-31.
[30] M.I. Younis, MEMS Linear and Nonlinear Statics and Dynamics, Springer, New York, 2011.
[31] J.N. Reddy, Theory and Analysis of Elastic Plates and Shells, 2nd ed., Taylor & Francis, Philadelphia, 2007.
[32] J.N. Reddy, Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons, New York, 2002.
[33] A.R. Askari, Non-linear Analysis of Electrically Actuated Thin Micro-Plates Based on The Modified Couple Stress Theory, Ferdowsi University of Mashhad, Mashhad, Iran, 2017. (in Persian)
[34] B. Balachandran, E. Magrab, Vibrations, 2nd ed., Cengage Learning, Toronto, 2009.
[35] J.D. Faires, R.L. Burden, Numerical methods 3rd ed., Brooks/Cole, 2002.
[37] S.A. Alkharabsheh, M.I. Younis, Statics and dynamics of MEMS arches under axial forces, J. Vib. Acoust., 135(2) (2013) 021007.