بررسی رفتار مکانیکی نانوکامپوزیت منیزیمی تقویت شده به‌وسیله‌ی نانو‌لوله بور نیترید به‌روش دینامیک مولکولی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 اراک-مهندسی مکانیک

2 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه اراک، اراک، ایران

3 دانشجوی دکتری، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه شهرکرد، شهرکرد، ایران

4 استادیار، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه صنعتی اراک، اراک، ایران

5 دانشیار، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه صنعتی اراک، اراک، ایران

چکیده

نانوکامپوزیت‌‌های پایه منیزیم به طور گسترده در صنایع هوافضا، خودروسازی و پزشکی استفاده می‌شوند. با توجه به خواص ویژه نانولوله بور نیترید، این نانولوله نقش مهمی در تقویت نانو کامپوزیت‌‌ها ایفا می‌‌نماید. در این پژوهش نانوکامپوزیت منیزیم به‌‌وسیله‌‌ی نانولوله‌ی بور نیترید تقویت شده و خواص مکانیکی این نانوکامپوزیت‌‌ها تحت بارگذاری کششی تک محوره، در راستای محوری نانو‌لوله، با روش دینامیک مولکولی توسط نرم‌‌افزار لمپس بررسی شده است. همچنین ضرایب تابع پتانسیل بین‌‌اتمی اتم‌‌های منیزیم، با استفاده از قانون ترکیب و داده‌‌های استخراج شده توسط نرم‌‌افزار گوسین، محاسبه شده است. نتایج شبیه‌‌سازی‌های دینامیک مولکولی حاکی از بهبود خواص مکانیکی نانوکامپوزیت فلزی پایه منیزیم به‌‌دلیل اضافه نمودن نانولوله‌‌های بور نیترید می‌باشد. وجود استحکام‌‌دهنده نانولوله‌ی بور نیترید (0،12) ,(0،14) ,(0،16) و (0،18) به‌‌عنوان تقویت‌‌کننده‌ی زمینه‌ی منیزیم، سبب افزایش مدول الاستیک نانوکامپوزیت‌‌ها به‌‌ترتیب به میزان 13، 14/9، 16/2 و 17 درصد نسبت به منیزیم خالص شده است. نتایج دیگر این تحقیق حاکی از آن است که رفتار الاستیک نانوکامپوزیت مستقل از تغییرات نرخ کرنش است. هم‌‌چنین با انجام این شبیه‌‌سازی در محدوده وسیعی از دما، تغییرات آشکاری در خواص مکانیکی نانو کامپوزیت در دماهای مختلف بدست آمده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of Mechanical Behavior of Boron Nitride Nanotubes -Reinforced Magnesium Nanocomposite Using Molecular Dynamics Simulations

نویسندگان [English]

  • Mojtaba Zolfaghari 1
  • Yeganeh Jafarkalhori 2
  • Hamed Heydari 3
  • Vahid Tahmasbi 4
  • Mahdi Safari 5
1 اراک-مهندسی مکانیک
2 School of Mechanic Engineering, Arak University, Arak, Iran
3 School of Mechanic Engineering, Shahrekord University, Shahrekord, Iran
4 School of Mechanic Engineering, Arak University of Technology, Arak, Iran
5 Department of Mechanical Engineering/Arak University of Technology
چکیده [English]

Magnesium-based nanocomposites are widely used in the aerospace, automotive, and medical industries. Due to the special properties of boron nitride nanotubes, these nanotubes play an important role in strengthening nanocomposites. In this research, magnesium nanocomposites are reinforced by boron nitride nanotubes and the mechanical properties of these nanocomposites under uniaxial tensile loading in the axial direction of the nanotubes have been investigated by the molecular dynamics method by Lammps software. Also, the coefficients of the atomic potential function of magnesium atoms have been calculated using the law of composition and the data extracted by Gaussian software. The results of molecular dynamics simulations show the improvement of mechanical properties of magnesium-based metal nanocomposites due to the addition of boron nitride nanotubes. The presence of boron nitride (0,12), (0,14), (0,16) and (0,18) nanotube reinforcers as magnesium field reinforcers increased the elastic modulus by 13, 14.9, 16.2 and 17 percent. Other results of this study indicate that the elastic behavior of nanocomposites is independent of strain rate changes. Also, by performing this simulation over a wide range of temperatures, obvious changes in the mechanical properties of the nanocomposite at different temperatures have been obtained.

کلیدواژه‌ها [English]

  • Molecular Dynamics
  • Nanocomposite
  • Magnesium
  • Boron Nitride Nanotube
[1] D.K. Rajak, D.D. Pagar, R. Kumar, C.I. Pruncu, Recent progress of reinforcement materials: A comprehensive overview of composite materials, Journal of Materials Research and Technology, 8(6) (2019) 6354-6374.
[2] M. Shahin, K. Munir, C. Wen, Y. Li, Magnesium matrix nanocomposites for orthopedic applications: a review from mechanical, corrosion, and biological perspectives, Acta biomaterialia, 96 (2019) 1-19.
[3] J.-P. Salvetat, J.-M. Bonard, N. Thomson, A. Kulik, L. Forro, W. Benoit, L. Zuppiroli, Mechanical properties of carbon nanotubes, Applied Physics A, 69(3) (1999) 255-260.
[4] B.I. Yakobson, P. Avouris, Mechanical properties of carbon nanotubes, Carbon nanotubes,  (2001) 287-327.
[5] M. Santosh, P.K. Maiti, A. Sood, Elastic properties of boron nitride nanotubes and their comparison with carbon nanotubes, Journal of nanoscience and nanotechnology, 9(9) (2009) 5425-5430.
[6] S. Sharma, P. Setia, R. Chandra, N. Thakur, Experimental and molecular dynamics study of boron nitride nanotube-reinforced polymethyl methacrylate composites, Journal of Composite Materials, 54(1) (2020) 3-11.
[7] M. Rahmat, A. Naftel, B. Ashrafi, M.B. Jakubinek, Y. Martinez‐Rubi, B. Simard, Dynamic mechanical characterization of boron nitride nanotube—epoxy nanocomposites, Polymer Composites, 40(6) (2019) 2119-2131.
[8] A.B. Kakarla, C. Kong, W. Kong, I. Kong, Synthesis and characterization of boron nitride nanotubes-polycaprolactone nanocomposite, in:  Materials Science Forum, Trans Tech Publ, 2019, pp. 39-44.
[9] J. Guan, A. Derdouri, B. Ashrafi, A. Benhalima, K.S. Kim, M. Daroszewska, B. Simard, Boron nitride nanotubes reinforced polycarbonate nanocomposites, Materials Today Communications, 20 (2019) 100586.
[10] Z. Cong, S. Lee, Study of mechanical behavior of BNNT-reinforced aluminum composites using molecular dynamics simulations, Composite Structures, 194 (2018) 80-86.
[11] V. Vijayaraghavan, L. Zhang, Tensile Properties of Boron Nitride-Carbon Nanosheet-Reinforced Aluminum Nanocomposites Using Molecular Dynamics Simulation, JOM, 72(6) (2020) 2305-2311.
[12] P. Sedigh, A. Zare, A. Montazeri, Evolution in aluminum applications by numerically-designed high strength boron-nitride/Al nanocomposites, Computational Materials Science, 171 (2020) 109227.
[13] X. Zhou, X. Liu, F. Sansoz, M. Shen, Molecular dynamics simulation on temperature and stain rate-dependent tensile response and failure behavior of Ni-coated CNT/Mg composites, Applied Physics A, 124(7) (2018) 1-11.
[14] S.R. Bakshi, D. Lahiri, A. Agarwal, Carbon nanotube reinforced metal matrix composites-a review, International materials reviews, 55(1) (2010) 41-64.
[15] H.-Y. Song, X.-W. Zha, Mechanical properties of nickel-coated single-walled carbon nanotubes and their embedded gold matrix composites, Physics Letters A, 374(8) (2010) 1068-1072.
[16] R. Rezaei, M. Shariati, H. Tavakoli-Anbaran, Mechanical characteristics and deformation mechanism of boron nitride nanotube reinforced metal matrix nanocomposite based on molecular dynamics simulations, Journal of Materials Research, 33(12) (2018) 1733-1741.
[17] G.G. Genchi, G. Ciofani, Bioapplications of boron nitride nanotubes, in, Future Medicine, 2015.
[18] W. Qin, A. Kolooshani, A. Kolahdooz, S. Saber-Samandari, S. Khazaei, A. Khandan, F. Ren, D. Toghraie, Coating the magnesium implants with reinforced nanocomposite nanoparticles for use in orthopedic applications, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 621 (2021) 126581.
[19] C. Sevik, A. Kinaci, J.B. Haskins, T. Çağın, Characterization of thermal transport in low-dimensional boron nitride nanostructures, Physical Review B, 84(8) (2011) 085409.
[20] M.S. Daw, M.I. Baskes, Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals, Physical review letters, 50(17) (1983) 1285.
[21] S. Foiles, M. Baskes, M.S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Physical review B, 33(12) (1986) 7983.
[22] S. Wilson, M. Mendelev, A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals, The Journal of Chemical Physics, 144(14) (2016) 144707.
[23] G.S. Camprubí, Mechanical properties at nano-level, Universitat Politècnica de Catalunya. Escola Tècnica Superior d'Enginyeria …, 2010.
[24] J.H. Lee, A study on a boron-nitride nanotube as a gigahertz oscillator, Journal of the Korean Physical Society, 49(1) (2006) 172-176.
[25] S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING: a generic force field for molecular simulations, Journal of Physical chemistry, 94(26) (1990) 8897-8909.
[26] J. Xiang, L. Xie, S.A. Meguid, S. Pang, J. Yi, Y. Zhang, R. Liang, An atomic-level understanding of the strengthening mechanism of aluminum matrix composites reinforced by aligned carbon nanotubes, Computational Materials Science, 128 (2017) 359-372.
[27] Y. Zhou, M. Hu, Mechanical behaviors of nanocrystalline Cu/SiC composites: An atomistic investigation, Computational Materials Science, 129 (2017) 129-136.
[28] D. Hull, D.J. Bacon, Introduction to dislocations, Elsevier, 2011.