[1] L.L. Howell, Compliant mechanisms, in: 21st Century Kinematics, Springer, 2013, pp. 189-216.
[2] L.L. Howell, S.P. Magleby, B.M. Olsen, Handbook of compliant mechanisms, John Wiley & Sons, 2013.
[3] C.-H. Liu, G.-F. Huang, C.-H. Chiu, T.-Y. Pai, Topology synthesis and optimal design of an adaptive compliant gripper to maximize output displacement, Journal of Intelligent & Robotic Systems, 90(3-4) (2018) 287-304.
[4] M. Lofroth, E. Avci, Development of a novel modular compliant gripper for manipulation of micro objects, Micromachines, 10(5) (2019) 313.
[5] X. Zhang, X. Xiang, Y. Wang, G. Ding, X. Xu, Z. Yang, A Heterogeneous Integrated MEMS Inertial Switch With Compliant Cantilevers Fixed Electrode and Electrostatic Locking to Realize Stable On-State, Journal of Microelectromechanical Systems, 28(6) (2019) 977-986.
[6] Q. Xu, Z. Yang, B. Fu, J. Li, H. Wu, Q. Zhang, Y. Sun, G. Ding, X. Zhao, A surface-micromachining-based inertial micro-switch with compliant cantilever beam as movable electrode for enduring high shock and prolonging contact time, Applied Surface Science, 387 (2016) 569-580.
[7] Q.-D. Truong, D.-A. Wang, Design and characterization of a mouse trap based on a bistable mechanism, Sensors and Actuators A: Physical, 267 (2017) 360-375.
[8] N. Le Chau, N.T. Tran, T.-P. Dao, A multi-response optimal design of bistable compliant mechanism using efficient approach of desirability, fuzzy logic, ANFIS and LAPO algorithm, Applied Soft Computing, 94 (2020) 106486.
[9] M.M. Elsisy, M.H. Arafa, C.A. Saleh, Y.H. Anis, Modeling of a Symmetric Five-Bar Displacement Amplification Compliant Mechanism for Energy Harvesting, Sensors, 21(4) (2021) 1095.
[10] M.A. Abdelnaby, M. Arafa, Energy harvesting using a flextensional compliant mechanism, Journal of Intelligent Material Systems and Structures, 27(19) (2016) 2707-2718.
[11] A. Zhang, G. Chen, A comprehensive elliptic integral solution to the large deflection problems of thin beams in compliant mechanisms, Journal of Mechanisms and Robotics, 5(2) (2013).
[12] L. Campanile, A. Hasse, A simple and effective solution of the elastica problem, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 222(12) (2008) 2513-2516.
[13] P. Liu, P. Yan, Modeling and Analysis of Beam Flexure Based Double Parallel Guiding Mechanisms: A Modified Pseudo-Rigid-Body Approach, in: ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2016.
[14] S. Awtar, S. Sen, A generalized constraint model for two-dimensional beam flexures: Nonlinear strain energy formulation, Journal of mechanical Design, 132(8) (2010).
[15] G. Chen, F. Ma, G. Hao, W. Zhu, Modeling large deflections of initially curved beams in compliant mechanisms using chained beam constraint model, Journal of Mechanisms and Robotics, 11(1) (2019) 011002.
[16] S. Awtar, A.H. Slocum, Closed-form nonlinear analysis of beam-based flexure modules, in: ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers Digital Collection, 2005, pp. 101-110.
[17] S. Awtar, S. Sen, A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Load-Displacement Formulation, Journal of Mechanical Design, 132(8) (2010).
[18] S. Awtar, A.H. Slocum, E. Sevincer, Characteristics of beam-based flexure modules, (2007).
[19] S. Sen, S. Awtar, Nonlinear strain energy formulation of a generalized bisymmetric spatial beam for flexure mechanism analysis, Journal of Mechanical Design, 136(2) (2014).
[20] M. Bakhtiari-Shahri, H. Moeenfard, Topology optimization of fundamental compliant mechanisms using a novel asymmetric beam flexure, International Journal of Mechanical Sciences, 135 (2018) 383-397.
[21] H. Malaeke, H. Moeenfard, A novel flexure beam module with low stiffness loss in compliant mechanisms, Precision Engineering, 48 (2017) 216-233.
[22] F. Ma, G. Chen, Modeling large planar deflections of flexible beams in compliant mechanisms using chained beam-constraint-model, Journal of Mechanisms and Robotics, 8(2) (2016).
[23] C. He, Q. Xie, Z. Yang, S. Xue, Modelling large planar deflections of flexible bundled conductors in substations using a modified chained-beam constraint model, Engineering Structures, 185 (2019) 278-285.
[24] H. Moeenfard, S. Awtar, Modeling geometric nonlinearities in the free vibration of a planar beam flexure with a tip mass, Journal of Mechanical Design, 136(4) (2014).
[25] M. Radgolchin, H. Moeenfard, Analytical modeling of nonlinear flexural-extensional vibration of flexure beams with an interconnected compliant element, Mechanics Research Communications, 89 (2018) 23-33.
[26] M.N. Aghaei, H. Moeenfard, M. Moavenian, Nonlinear extensional-flexural vibrations in variable cross section beams with eccentric intermediate mass, International Journal of Mechanical Sciences, 196 (2021) 106248.
[27] H. Malaeke, H. Moeenfard, Analytical modeling of large amplitude free vibration of non-uniform beams carrying a both transversely and axially eccentric tip mass, Journal of Sound and Vibration, 366 (2016) 211-229.
[28] M.B. Akbarzadeh, H. Moeenfard, S. Awtar, Nonlinear dynamic modeling of a parallelogram flexure, Mechanism and Machine Theory, 153 (2020) 103985.
[29] C.J. Silva, M.F. Daqaq, Nonlinear flexural response of a slender cantilever beam of constant thickness and linearly-varying width to a primary resonance excitation, Journal of Sound and Vibration, 389 (2017) 438-453.
[30] M.R. Sayag, E.H. Dowell, Linear versus nonlinear response of a cantilevered beam under harmonic base excitation: theory and experiment, Journal of Applied Mechanics, 83(10) (2016).
[31] S. Iqbal, R.I. Shakoor, Y. Lai, A.M. Malik, S.A. Bazaz, Experimental evaluation of force and amplification factor of three different variants of flexure based micro displacement amplification mechanism, Microsystem Technologies, 25(7) (2019) 2889-2906.
[32] A. Vafaie, M. Tahmasebipour, Y. Tahmasebipour, A novel capacitive micro-accelerometer made of steel using micro wire electrical discharge machining method, Journal of Micromechanics and Microengineering, 29(12) (2019) 125018.
[33] Y. Gao, C. Yan, H. Huang, T. Yang, G. Tian, D. Xiong, N. Chen, X. Chu, S. Zhong, W. Deng, Microchannel‐Confined MXene Based Flexible Piezoresistive Multifunctional Micro‐Force Sensor, Advanced Functional Materials, 30(11) (2020) 1909603.
[34] P. Trocha, M. Karpov, D. Ganin, M.H. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, Ultrafast optical ranging using microresonator soliton frequency combs, Science, 359(6378) (2018) 887-891.
[35] A. Kravchenko, V. Komenko, W.-J. Fischer, Silicon-On-Nothing Micro-Pirani Gauge for Interior-Pressure Measurement, in: Multidisciplinary Digital Publishing Institute Proceedings, 2018, pp. 1079.
[36] A. Jain, Development of Indigenous Micro-gyroscope Technology, (2019).
[37] S. Afrang, H. Mobki, M. Hassanzadeh, G. Rezazadeh, Design and simulation of a MEMS analog micro-mirror with improved rotation angle, Microsystem Technologies, 25(3) (2019) 1099-1109.
[38] B. Leimkuhler, C. Matthews, Molecular Dynamics, Springer, 2016.
[39] V. Parvaneh, M. Shariati, A.M.M. Sabeti, Investigation of vacancy defects effects on the buckling behavior of SWCNTs via a structural mechanics approach, European Journal of Mechanics-A/Solids, 28(6) (2009) 1072-1078.
[40] S. Karparvarfard, M. Asghari, R. Vatankhah, A geometrically nonlinear beam model based on the second strain gradient theory, International Journal of Engineering Science, 91 (2015) 63-75.
[41] J.G. Korvink, E.B. Rudnyi, A. Greiner, Z. Liu, MEMS and NEMS simulation, in: MEMS: a practical guide to design, analysis, and applications, Springer, 2006, pp. 93-186.
[42] J.A. Pelesko, D.H. Bernstein, Modeling Mems and Nems, CRC press, 2002.
[43] F. Yang, A. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, 39(10) (2002) 2731-2743.
[44] D.C. Lam, F. Yang, A. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, 51(8) (2003) 1477-1508.
[45] F. Rajabi, S. Ramezani, A nonlinear microbeam model based on strain gradient elasticity theory, Acta Mechanica Solida Sinica, 26(1) (2013) 21-34.
[46] R.S. Joshi, A.C. Mitra, S.R. Kandharkar, Design and analysis of compliant micro-gripper using pseudo rigid body model (PRBM), Materials Today: Proceedings, 4(2) (2017) 1701-1707.
[47] B. Ding, Y. Li, Design and analysis of a decoupled XY micro compliant parallel manipulator, in: 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), IEEE, 2014, pp. 1898-1903.
[48] T.-P. Dao, S.-C. Huang, Design and analysis of a compliant micro-positioning platform with embedded strain gauges and viscoelastic damper, Microsystem Technologies, 23(2) (2017) 441-456.
[49] J. Reddy, Nonlocal theories for bending, buckling and vibration of beams, International Journal of Engineering Science, 45(2-8) (2007) 288-307.
[50] M. Kahrobaiyan, M. Asghari, M. Rahaeifard, M. Ahmadian, A nonlinear strain gradient beam formulation, International Journal of Engineering Science, 49(11) (2011) 1256-1267.
[51] F. Beer, E. Johnston, J. DeWolf, D. Mazurek, Mechanics of Materials. 7th_Edition, New York. MeGraw-Hill Education Ltd, (2015).
[52] L. Cui, C. Okwudire, S. Awtar, Modeling complex nonminimum phase zeros in flexure mechanisms, Journal of Dynamic Systems, Measurement, and Control, 139(10) (2017).