آنالیز تشکیل قطره آب در روغن در کانال جریان هم‌محور به روش دینامیک سیالات محاسباتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی شیمی-دانشگاه صنعتی امیر کبیر- پردیس ماهشهر

2 عضو هیات علمی، دانشکده مهندسی شیمی، دانشگاه صنعتی امیرکبیر

چکیده

سیستم‌های دوفازی ابزاری مهم برای تشکیل قطرات محسوب می‌شوند که به دلیل کاربردهای متنوع در چند دهه اخیر بسیار مورد توجه قرار گرفته‌اند. در پژوهش حاضر، فرآیند تشکیل قطره‌ی آب در روغن در یک هندسه هم‌محور با استفاده از روش حجم سیال شبیه‌سازی می‌گردد و تأثیر پارامترهای مؤثر بر این فرآیند مانند سرعت و دانسیته فاز گسسته و همچنین کشش سطحی مورد بررسی قرار می‌گیرد. از نتایج حاصل برای تولید ذرات کروی گاما-آلومینا به روش قطره‌ی روغن استفاده می‌شود. در این پژوهش با ساخت یک سامانه آزمایشگاهی، عوامل مؤثر بر فرآیند تشکیل قطره بررسی گردد. نتایج عددی با داده‌های آزمایشگاهی اعتبارسنجی شده است. خطای اندازه‌گیری برای اندازه قطره حدود 5% و برای کرویت حدود 4% است. مطالعات نشان می‌دهد که اگر چه پارامترهای ذکر شده تأثیر زیادی روی اندازه قطرات و زمان جدایش دارند اما وابستگی اندازه قطرات به کشش سطحی و دانسیته فاز گسسته بیشتر است. افزایش کشش ‌سطحی موجب افزایش اندازه قطرات و زمان جدایش می‌شود. همچنین، با افزایش دانسیته فاز گسسته، اندازه قطرات کاهش اما زمان جدایش افزایش یافته است. افزایش سرعت نیز با وجود تأثیر ناچیز، منجر به افزایش اندازه و کاهش زمان جدایش قطرات شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Computational Fluid Dynamics Analysis of Water-in-Oil Droplet Formation within a Co-Flow Channel

نویسندگان [English]

  • Foruzan Rostami 1
  • Mohammad Rahmani 2
1 Chemical Enginering Department Amirkabir University Tecnology Mahshahr Campus
2 Faculty member, Chemical Engineering department, Amirkabir University of Technology
چکیده [English]

Two-phase systems are important tools for droplet formation that have received much attention in recent decades due to their vast applications. In the present work, the process of water-in-oil droplet formation, in a coaxial geometry using the fluid volume method, and the impact of effective parameters such as dispersed phase velocity and density and also interfacial tension are investigated. The results are used to produce spherical γ-alumina particles by the oil drop method. In this study, using a laboratory setup, the factors affecting the droplet formation process are investigated. Results are validated against laboratory data. The measurement error is about 5% for droplet size and about 4% for sphericity. Studies show that although the mentioned parameters have a great effect on droplet size and separation time, the dependency of droplets diameter on interfacial tension and dispersed phase density is higher. Increasing the interfacial tension causes increasing droplets size and separation time. Also increasing the density of the dispersed phase reduces the diameter of the droplets and increases separation time. Increasing the velocity also had a small effect, but lead to an increase in size and reduced droplets separation time.

کلیدواژه‌ها [English]

  • Droplet formation
  • Two-phase flow
  • Co-flow channel
  • Volume of fluid method
  • Computational fluid dynamics
[1]      S. G. Sontti and A. Atta, Numerical Insights on Controlled Droplet Formation in a Microfluidic Flow-Focusing Device, Industrial & Engineering Chemistry Research. 59(9)(2020) 3702–3716.
[2]      C. N. Baroud, F. Gallaire, and R. Dangla, Dynamics of microfluidic droplets, Lab on a Chip, 10(16)(2010) 2032–2045.
[3]      M. Rahimi, S. Yazdanparast, and P. Rezai, Parametric study of droplet size in an axisymmetric flow-focusing capillary device, Chinese Journal of Chemical Engineering, 28(4)(2020) 1016–1022.
[4]      P. Dastyar, M. S. Salehi, B. Firoozabadi, and H. Afshin, Experimental investigation of the effects of surfactant on the dynamics of formation process of liquid drops, Journal Industrial and Engineering Chemistry, 89(2020) 183–193.
[5]      E. Roumpea, N. M. Kovalchuk, M. Chinaud, E. Nowak, M. J. H. Simmons, and P. Angeli, Experimental studies on droplet formation in a flow-focusing microchannel in the presence of surfactants, Chemical Engineering Science, 195(2019) 507–518.
[6]      J. Lian, X. Luo, X. Huang, Y. Wang, Z. Xu, and X. Ruan, Investigation of microfluidic co-flow effects on step emulsification: Interfacial tension and flow velocities, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 568(2019)123733.
[7]      Z. Q. Huang and H. Wang, VOF Simulation Studies on Single Droplet Fluid Dynamic Behavior in Liquid–Liquid Flow Process, Journal of Chemical Engineering of Japan, 51(1)(2018) 33-48.
[8]      T. Chekifi, Computational study of droplet breakup in a trapped channel configuration using volume of fluid method, Flow Measurement and Instrumentation, 59(2017) 118–125.
[9]      M. Wang et al., Numerical simulations of wall contact angle effects on droplet size during step emulsification, RSC advances., 8(58) (2018) 33042–33047.
[10]    W. Lan, S. Jing, X. Guo, and S. Li, Study on ‘interface – shrinkage – driven’ breakup of droplets in co-flowing microfluidic devices, Chemical Engineering Science., 158 (2017) 58–63.
[11]    C. Deng, H. Wang, W. Huang, and S. Cheng, Numerical and experimental study of oil-in-water (O/W) droplet formation in a co-flowing capillary device, Colloids and Surfaces A: Physicochemical and Engineering Aspects., 533(2017) 1–8.
[12]    W. Lan, S. Li, and G. Luo, Numerical and experimental investigation of dripping and jetting flow in a coaxial micro-channel, Chemical Engineering Science., 134 (2015) 76–85.
[13]    L. Wu and Y. Chen, Visualization study of emulsion droplet formation in a coflowing microchannel, Chem. Chemical Engineering and Processing: Process Intensification., 85 (2014) 77-85.
[14]    N. Chen, J. Wu, H. Jiang, and L. Dong, CFD Simulation of Droplet Formation in a Wide-Type Microfluidic T-Junction, Journal of dispersion science and technology., 33(11)(2012) 1635–1641.
[15]    T. M. Tran, F. Lan, C. S. Thompson, and A. R. Abate, From tubes to drops: Droplet-based microfluidics for ultrahigh-throughput biology, Journal of Physics D: Applied Physics., 46(11)(2013), 114004.
[16]    G. Buelna and Y. . Lin, Preparation of spherical alumina and copper oxide coated alumina sorbents by improved sol–gel granulation process, Microporous and mesoporous materials., 42(1) (2001)67-76.
[17]    M. Abdollahi, H. Atashi, and F. Farshchi Tabrizi, Parametric investigation of γ-alumina granule preparation via the oil-drop route, Advanced Powder Technology., 28(5)(2017) 1356–1371.
[18]    A. Islam, Y. H. Taufiq-Yap, C. M. Chu, E. S. Chan, and P. Ravindra, Synthesis and characterization of millimetric gamma alumina spherical particles by oil drop granulation method, Journal of Porous Materials., 19(5) (2012) 807–817.
[19]    C. W. Hirt and B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of computational physics., 39(1) (1981) 201–225.
[20]    E. Arai, A. Tartakovsky, R. G. Holt, S. Grace, and E. Ryan, Comparison of surface tension generation methods in smoothed particle hydrodynamics for dynamic systems, Computers & Fluids, 203 (2020) 104540.
[21]    R. Duan, C. Sun, and S. Jiang, A new surface tension formulation for particle methods, International Journal of Multiphase Flow, 124 (2019) 103187.
[22]    M. Renardy, Y. Renardy, Numerical simulation of moving contact line problems using a volume-of-fluid method‏, Journal of Computational Physics, 171(1) (2012) 243-263.
[23]    J. Sivasamy, T. N. Wong, N. T. Nguyen, and L. T. H. Kao, An investigation on the mechanism of droplet formation in a microfluidic T-junction, Microfluidics and nanofluidics, 11(1) (2011) 1-10.
[24]    F. Bai, X. He, X. Yang, R. Zhou, Three dimensional phase-field investigation of droplet formation in microfluidic flow focusing devices with experimental validation, International Journal of Multiphase Flow, 93 (2017) 130-141.
[25]    C. Cramer, P. Fischer, and E. J. Windhab, Drop formation in a co-owing ambient fluid, Chemical Engineering Science, 59 (2004) 3045–3058.
[26]    J. H. Xu, P. F. Dong, H. Zhao, C. P. Tostado, and G. S. Luo, The dynamic effects of surfactants on droplet formation in coaxial microfluidic devices, Langmuir, 28(25) (2012) 9250–9258.
[27]    J. Hua, B. Zhang, and J. Lou, Numerical simulation of microdroplet formation in coflowing immiscible liquids, AIChE Journal, 53(10)(2007) 2534–2548.