[1] R. Langtry, F. Menter, Transition modeling for general CFD applications in aeronautics, in: 43rd AIAA aerospace sciences meeting and exhibit, 2005, pp. 522.
[2] R.B. Langtry, F. Menter, S. Likki, Y. Suzen, P. Huang, S. Völker, A correlation-based transition model using local variables—part II: test cases and industrial applications, Journal of Turbomachinery, 128(3) (2006) 423-434.
[3] C. Farell, S. Youssef, Experiments on turbulence management using screens and honeycombs, Journal of fluids engineering, 118(1) (1996) 26-32.
[4] R. Thompson, I. Hamilton, Harris, S. Berry, T. Horvath, R. Nowak, Hypersonic boundary layer transition for X-33 phase II vehicle, in: 36th AIAA Aerospace Sciences Meeting and Exhibit, 1997, pp. 867.
[5] H. Schlichting, K. Gersten, Boundary-layer theory, Springer, 2016.
[6] M.V. Morkovin, On the many faces of transition, in: Viscous drag reduction, Springer, 1969, pp. 1-31.
[7] E. Malkiel, R. Mayle, Transition in a separation bubble, in: ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition, American Society of Mechanical Engineers, 1995, pp. V001T001A003-V001T001A003.
[8] F. Menter, R. Langtry, S. Volker, Transition modelling for general purpose CFD codes, Flow, turbulence and combustion, 77(1-4) (2006) 303-277.
[9] D.K. Walters, D. Cokljat, A three-equation eddy-viscosity model for Reynolds-averaged Navier─Stokes simulations of transitional flow, Journal of fluids engineering, 130(12) (2008) 121401.
[10] S. Aftab, A.M. Rafie, N. Razak, K. Ahmad, Turbulence model selection for low reynolds number flows, PloS one, 11(4) (2016) e0153755.
[11] A. Hellsten, Some improvements in Menter's k-omega SST turbulence model, in: 29th AIAA, Fluid Dynamics Conference, 1998, pp. 2554.
[12] R.B. Langtry, F.R. Menter, Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes, AIAA journal, 47(12) (2009) 2894-2906.
[13] F. Menter, T. Esch, Elements of industrial heat transfer predictions, in: 16th Brazilian Congress of Mechanical Engineering (COBEM), sn, 2001.
[14] F.R. Menter, M. Kuntz, R. Langtry, Ten years of industrial experience with the SST turbulence model, Turbulence, heat and mass transfer, 4(1) (2003) 625-632.
[15] F.R. Menter, R.B. Langtry, S. Likki, Y. Suzen, P. Huang, S. Volker, A correlation-based transition model using local variables─part I: model formulation, Journal of turbomachinery, 128(3) (2006) 413-422.
[16] A. Draad, F. Nieuwstadt, The Earth's rotation and laminar pipe flow, Journal of Fluid Mechanics, 361 (1998) 297-308.
[17] A.A. Draad, G. Kuiken, F. Nieuwstadt, Laminar–turbulent transition in pipe flow for Newtonian and non-Newtonian fluids, Journal of Fluid Mechanics, 377 (1998) 267-312.
[18] J. Abraham, E. Sparrow, J. Tong, Breakdown of laminar pipe flow into transitional intermittency and subsequent attainment of fully developed intermittent or turbulent flow, Numerical Heat Transfer, Part B: Fundamentals, 54(2) (2008) 103-115.
[19] J. Abraham, E. Sparrow, J. Tong, W. Minkowycz, Intermittent Flow Modeling: Part I─Hydrodynamic and Thermal Modeling of Steady, Intermittent Flows in Constant Area Ducts, in: 2010 14th International Heat Transfer Conference, American Society of Mechanical Engineers, 2010, pp. 659-667.
[20] J. Abraham, E. Sparrow, J. Tong, W. Minkowycz, Intermittent Flow Modeling: Part 2─Time-Varying Flows and Flows in Variable Area Ducts, in: 2010 14th International Heat Transfer Conference, American Society of Mechanical Engineers, 2010, pp. 625-633.
[21] R. Lovik, J. Abraham, W. Minkowycz, E. Sparrow, Laminarization and turbulentization in a pulsatile pipe flow, Numerical Heat Transfer, Part A: Applications, 56(11) (2009) 861-879.
[22] J. Abraham, E. Sparrow, W. Minkowycz, R. Ramazani-Rend, J. Tong, Modeling internal flows by an extended menter transition model, Turbulence: Theory, Types, and Simulation (Nova, New York, 2011), (2011).
[23] E. Kahramanoglu.lu, S. Sezen, S. Bayraktar, Computational fluid dynamics analyses on the hydrodynamic entry length in internal flows, Pamukkale University Journal of Engineering Sciences, 23(4) (2017).
[24] S.S. Varghese, S.H. Frankel, P.F. Fischer, Modeling transition to turbulence in eccentric stenotic flows, Journal of biomechanical engineering, 130(1) (2008) 014503.
[25] S.S. Varghese, S.H. Frankel, Numerical modeling of pulsatile turbulent flow in stenotic vessels, Journal of biomechanical engineering, 125(4) (2003) 445-460.
[26] F. Tan, G. Soloperto, S. Bashford, N. Wood, S. Thom, A. Hughes, X. Xu, Analysis of flow disturbance in a stenosed carotid artery bifurcation using two-equation transitional and turbulence models, Journal of biomechanical engineering, 130(6) (2008).
[27] A. Melling, J. Whitelaw, Turbulent flow in a rectangular duct, Journal of Fluid Mechanics, 78(2) (1976) 289-315.
[28] F. Anselmet, F. Ternat, M. Amielh, O. Boiron, P. Boyer, L. Pietri, Axial development of the mean flow in the entrance region of turbulent pipe and duct flows, Comptes Rendus Mecanique, 337(8) (2009) 573.
[29] S.A. Ahmed, D.P. Giddens, Velocity measurements in steady flow through axisymmetric stenoses at moderate Reynolds numbers, Journal of biomechanics, 16(7) (1983) 505-516.
[30] J. Elcner, F. Lizal, J. Jedelsky, J. Tuhovcak, M. Jicha, Laminar-turbulent transition in a constricted tube: Comparison of Reynolds-averaged Navier–Stokes turbulence models and large eddy simulation with experiments, Advances in Mechanical Engineering, 11(5) (2019) 1687814019852261.
[31] B. Ruck, B. Makiola, Flow separation over the inclined step, in: Physics of Separated Flows—Numerical, Experimental, and Theoretical Aspects, Springer, 1993, pp. 47-55.
[32] G. Round, An explicit approximation for the friction factor‐Reynolds number relation for rough and smooth pipes, The Canadian Journal of Chemical Engineering, 58(1) (1980) 122-123.
[33] D. Flórez-Orrego, W. Arias, D. López, H. Velásquez, Experimental and CFD study of a single phase cone-shaped helical coiled heat exchanger: an empirical correlation, in: Proceedings of the 25th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2012, pp. 375-394.
[34] C. Habchi, S. Russeil, D. Bougeard, J.-L. Harion, T. Lemenand, A. Ghanem, D. Della Valle, H. Peerhossaini, Partitioned solver for strongly coupled fluid–structure interaction, Computers & Fluids, 71 (2013) 306-319.
[35] I.B. Celik, U. Ghia, P.J. Roache, Procedure for estimation and reporting of uncertainty due to discretization in {CFD} applications, Journal of fluids engineering, 130(7) (2008).
[36] F. Gessner, J. Po, A. Emery, Measurements of developing turbulent flow in a square duct, in: Turbulent Shear Flows I, Springer, 1979, pp. 119-136.
[37] F. Durst, B. Ünsal, Forced laminar-to-turbulent transition of pipe flows, Journal of Fluid Mechanics, 560 (2006) 449-464.
[38] D. Drikakis, G. Papadopoulos, Experimental and numerical investigation of laminar-to-transitional pipe flow past a sudden expansion, in: American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 1996, pp. 679-684.
[39] M. Wimmer, J. Zierep, Transition from Taylor vortices to cross-flow instabilities, Acta mechanica, 140(1-2) (2000) 17-30.
[40] H.H. Choi, V.T. Nguyen, J. Nguyen, Numerical investigation of backward facing step flow over various step angles, Procedia Engineering, 154 (2016) 420-425.