[1] S.C. Cowin, Bone poroelasticity, Journal of biomechanics, 32(3) (1999) 217-238.
[2] T.A. Predey, L.E. Sewall, S.J. Smith, Percutaneous Vertebroplasty: New Treatment for Vertebral Compression Fractures, American Family Physician, 66(4) (2002) 611-616.
[3] T. Kraiem, A. Barkaoui, T. Merzouki, M. Chafra, Computational approach of the cortical bone mechanical behavior based on an elastic viscoplastic damageable constitutive model, International Journal of Applied Mechanics, 12(07) (2020) 2050081.
[4] D. Garcia, Elastic plastic damage laws for cortical bone, EPFL, 2006.
[5] D. Garcia, P.K. Zysset, M. Charlebois, A. Curnier, A three-dimensional elastic plastic damage constitutive law for bone tissue, Biomechanics and modeling in mechanobiology, 8(2) (2009) 149-165.
[6] D. Garcia, P.K. Zysset, M. Charlebois, A. Curnier, A 1D elastic plastic damage constitutive law for bone tissue, Archive of Applied Mechanics, 80(5) (2010) 543-555.
[7] M. Lovrenić-Jugović, Z. Tonković, I. Skozrit, Experimental and numerical investigation of cyclic creep and recovery behavior of bovine cortical bone, Mechanics of Materials, 146 (2020) 103407.
[8] Z. Li, J. Wang, G. Song, C. Ji, X. Han, Anisotropic and strain rate-dependent mechanical properties and constitutive modeling of the cancellous bone from piglet cervical vertebrae, Computer methods and programs in biomedicine, 188 (2020) 105279.
[9] C.-S. Lee, J.-M. Lee, B. Youn, H.-S. Kim, J.K. Shin, T.S. Goh, J.S. Lee, A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression, Journal of the mechanical behavior of biomedical materials, 65 (2017) 213-223.
[10] M. Pawlikowski, K. Jankowski, K. Skalski, New microscale constitutive model of human trabecular bone based on depth sensing indentation technique, Journal of the mechanical behavior of biomedical materials, 85 (2018) 162-169.
[11] M.J. Mirzaali, A. Bürki, J. Schwiedrzik, P.K. Zysset, U. Wolfram, Continuum damage interactions between tension and compression in osteonal bone, Journal of the mechanical behavior of biomedical materials, 49 (2015) 355-369.
[12] T.P. Ng, S. Koloor, J. Djuansjah, M.A. Kadir, Assessment of compressive failure process of cortical bone materials using damage-based model, Journal of the mechanical behavior of biomedical materials, 66 (2017) 1-11.
[13] Q. Rong, Q. Luo, Inelastic Modelling of Bone Damage Under Compressive Loading, in: Intelligent Life System Modelling, Image Processing and Analysis, Springer, 2021, pp. 211-220.
[14] M. Pawlikowski, K. Barcz, Non-linear viscoelastic constitutive model for bovine cortical bone tissue, Biocybernetics and biomedical engineering, 36(3) (2016) 491-498.
[15] J.J. Schwiedrzik, P. Zysset, An anisotropic elastic-viscoplastic damage model for bone tissue, Biomechanics and modeling in mechanobiology, 12(2) (2013) 201-213.
[16] D. Remache, M. Semaan, J.-M. Rossi, M. Pithioux, J.-L. Milan, Application of the Johnson-Cook plasticity model in the finite element simulations of the nanoindentation of the cortical bone, Journal of the mechanical behavior of biomedical materials, 101 (2020) 103426.
[17] V. Prasannavenkadesan, P. Pandithevan, JOHNSON–COOK MODEL COMBINED WITH COWPER–SYMONDS MODEL FOR BONE CUTTING SIMULATION WITH EXPERIMENTAL VALIDATION, Journal of Mechanics in Medicine and Biology, 21(02) (2021) 2150010.
[18] J. Lei, L. Li, Z. Wang, F. Zhu, Characterizing strain rate-dependent mechanical properties for bovine cortical bones, Journal of biomechanical engineering, 142(9) (2020).
[19] P.K. Zysset, U. Wolfram, A rate-independent continuum model for bone tissue with interaction of compressive and tensile micro-damage, Journal of the mechanical behavior of biomedical materials, 74 (2017) 448-462.
[20] B. Bresler, K.S. Pister, Strength of concrete under combined stresses, in: Journal Proceedings, 1958, pp. 321-345.
[21] D. Garcia, Elastic plastic damage constitutive laws for cortical bone, Ecole Polytechnique Fédérale de Lausanne (EPFL), 2006.
[22] T.P. Ng, S.S.R. Koloor, J.R.P. Djuansjah, M.R.A. Kadir, Assessment of compressive failure process of cortical bone materials using damage-based model, Journal of the Mechanical Behavior of Biomedical Materials, 66 (2017) 1-11.
[23] K. Alam, M. Khan, V.V. Silberschmidt, 3D finite-element modelling of drilling cortical bone: Temperature analysis, J Med Biol Eng, 34(6) (2014) 618-623.