[1] Wernik, J.M.; Cornwell-Mott, B.J.; Meguid, S.A.,2012. “Determination of the interfacial properties of carbon nanotube reinforced polymer composites using atomistic-based continuum model”, International Journal of Solids and Structures, 49, pp. 1852- 1863.
[2] Ghorbanpour Arani, A.; Maghamikia, Sh.;Mohammadimehr, M.; Arefmanesh, A., 2013.“Buckling analysis of laminated composite rectangular plates reinforced by SWCNTs using analytical and finite element methods”, Journal of mechanical science and technology, 25, pp. 809- 820.
[3] Pan, Y.; Weng G.J.; Meguid, S.A.; Bao, W.S.; Zhu,Z.H.; Hamouda, A.M.S., 2013. “Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites” Mechanics of Materials,58, pp. 1- 11.
[4] Wang, Y.M.; Weng, G.J., 1992. “The Influence of Inclusion Shape on the Overall Viscoelastic Behavior of Composites”, Journal of Applied Mechanics, 59, pp.510- 518.
[5] Lee, J.; Weng, G.J., 1994. “Strain-Rate Sensitivity,Relaxation Behavior, and Complex Moduli of a Class of Isotropic Viscoelastic Composites”, Journal of Engineering Materials and Technology, 116, pp. 495-504.
[6] Lee, J.; Weng, G.J., 1996. “Effect of a viscoelastic interphase on the creep and stress/strain behavior of fiber-reinforced polymer matrix composites”,Composites Part B, 27B, pp. 589- 598.
[7] Odegard G.M.; Gates T., 2006. “Modeling and Testing of the Viscoelastic Properties of a Graphite Nanoplatelet/Epoxy Composite”, Journal of Intelligent Material Systems and Structures, 17, pp. 239- 246.
[8] Aldraihem, O.J., 2011. “Micromechanics modeling of viscoelastic properties of hybrid composites with shunted and arbitrarily oriented piezoelectric inclusions”, Mechanics of Materials, 43, pp. 740- 753.
[9] Diani, J.; Gilormini, P.; Merckel, Y.; Vion-Loisel,F., 2013. “Micromechanical modeling of the linear viscoelasticity of carbon-black filled styrene butadiene rubbers: The role of the filler–rubber interphase”,Mechanics of Materials, 59, pp. 65- 72.
[10] Haj-Ali, R.M.; Muliana, A.H., 2003. “A micromechanical constitutive framework for the nonlinear viscoelastic behavior of pultruded composite materials”, International Journal of Solids and Structures, 40, pp. 1037- 1057.
[11] Muliana, A.H.; Haj-Ali, R.M., 2004. “Nested nonlinear viscoelastic and micromechanical models for the analysis of pultruded composite materials and structures”, Mechanics of Materials, 36, pp. 1087-1110.
[12] Li, K.; Gao, X.L.; Roy, A.K., 2006. “Micromechanical Modeling of Viscoelastic Properties of Carbon Nanotube-Reinforced Polymer Composites”,Mechanics of Advanced Materials and Structures, 13,pp. 317- 328.
[13] Pan, Y.; Weng, G.J.; Meguid, S.A.; Bao, W.S.; Zhu,Z.H.; Hamouda, A.M.S., 2013. “Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites”, Mechanics of aterials,58, pp. 1- 11.
[14] Shi, D.L.; Feng, X.Q.; Huang, Y.Y.; Hwang, K.C.;Gao, H., 2004. “The Effect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-Reinforced Composites”, Journal of Engineering Materials and Technology, 126, pp. 250-257.
[15] Lakes, R., 2009. “Viscoelastic Materials”, Cambridge University Press, New York. [16] Jia, Y.; Peng, K.; Gong, X.; Zhang, Z., 2011. “Creep and recovery of polypropylene/carbon nanotube composites”, International Journal of Plasticity, 27,pp. 1239- 1251.
[17] Nemat-Nasser, S., 1993. “Micromechanics: Overall Properties of Heterogeneous Materials”, Elsevier, NewYork.
[18] Pegel, S.; Potschke, P.; Petzold, G.; Alig, I.; Dudkin,S.M.,; Lellinger, D., 2008. “Dispersion, agglomeration,and network formation of multiwalled carbon nanotubes in polycarbonate melts”, Polymer, 49, pp. 974- 984.
[19] Yu, M.F.; Lourie, O.; Dyer, M.J.; Moloni, K.; Kelly,T.F.; Ruoff, R.S., 2000. “Strength and Breaking Mechanism of Multi-walled Carbon Nanotubes Under Tensile Load”, Science, 287, pp. 637- 640.