[1] S.A. Bhat, J. Sadhukhan, Process intensification aspects for steam methane reforming: An overview, AIChE Journal, 55(2) (2009) 408-422.
[2] P. Nikolaidis, A. Poullikkas, A comparative overview of hydrogen production processes, Renewable and Sustainable Energy Reviews, 67 (2017) 597-611.
[3] M. Yari, H. Ghaebi, and S. Ghavami gargari, Energy and Exergy Analysis of a Novel Biogas Steam Reforming System for Hydrogen Production using Solar Energy, journal of mechanic engineering, (2019), (in Persian).
[4] W. Lubitz, W. Tumas, Hydrogen: An Overview, Chemical Reviews, 107(10) (2007) 3900-3903.
[5] A. Saberimoghaddam, and A. Nozari, Kinetic Study of Optimum Ni-Al-Zn Catalyst in the Steam Methane Reforming Reaction, Petroleum Research, (2018), (in Persian).
[6] V. Palma, A. Ricca, E. Meloni, M. Martino, M. Miccio, P. Ciambelli, Experimental and numerical investigations on structured catalysts for methane steam reforming intensification, Journal of Cleaner Production, 111 (2016) 217-230.
[7] B.V.R. Kuncharam, A.G. Dixon, Multi-scale two-dimensional packed bed reactor model for industrial steam methane reforming, Fuel Processing Technology, 200 (2020) 106314.
[8] S. Saeidi, F. Fazlollahi, S. Najari, D. Iranshahi, J.J. Klemeš, L.L. Baxter, Hydrogen production: Perspectives, separation with special emphasis on kinetics of WGS reaction: A state-of-the-art review, Journal of Industrial and Engineering Chemistry, 49 (2017) 1-25.
[9] Xu. J, G.F. Froment, Methane Steam Reforming, Methanation and Water-Gas Shift: 1. Intrinsic Kinetics, (1989) 88-96.
[10] X. Wang, R.J. Gorte, A study of steam reforming of hydrocarbon fuels on Pd/ceria, Applied Catalysis A: General, 224(1) (2002) 209-218.
[11] G. Postole, K. Girona, J. Toyir, A. Kaddouri, P. Gélin, Catalytic Steam Methane Reforming Over Ir/Ce0.9Gd0.1O2–x: Resistance to Coke Formation and Sulfur Poisoning, Fuel Cells, 12(2) (2012) 275-287.
[12] T. Zhu, P.W. van Grootel, I.A.W. Filot, S.-G. Sun, R.A. van Santen, E.J.M. Hensen, Microkinetics of steam methane reforming on platinum and rhodium metal surfaces, Journal of Catalysis, 297 (2013) 227-235.
[13] E.D. German, M. Sheintuch, Methane steam reforming rates over Pt, Rh and Ni(111) accounting for H tunneling and for metal lattice vibrations, Surface Science, 656 (2017) 126-139.
[14] T. Numaguchi, K. Kikuchi, Intrinsic kinetics and design simulation in a complex reaction network, steam-methane reforming, in: J.R. Bourne, W. Regenass, W. Richarz (Eds.) Tenth International Symposium on Chemical Reaction Engineering, Pergamon, (1988) 2295-2301.
[15] J. Wei, E. Iglesia, Reaction Pathways and Site Requirements for the Activation and Chemical Conversion of Methane on Ru−Based Catalysts, The Journal of Physical Chemistry B, 108(22) (2004) 7253-7262.
[16] Y. Wang, Y.H. Chin, R.T. Rozmiarek, B.R. Johnson, Y. Gao, J. Watson, A.Y.L. Tonkovich, D.P. Vander Wiel, Highly active and stable Rh/MgOAl2O3 catalysts for methane steam reforming, Catalysis Today, 98(4) (2004).
[17] S. Rakass, H. Oudghiri-Hassani, P. Rowntree, N. Abatzoglou, Steam reforming of methane over unsupported nickel catalysts, Journal of Power Sources, 158(1) (2006) 485-496.
[18] J.G. Jakobsen, T.L. Jørgensen, I. Chorkendorff, J. Sehested, Steam and CO2 reforming of methane over a Ru/ZrO2 catalyst, Applied Catalysis A: General, 377(1) (2010) 158-166.
[19] S.Z. Abbas, V. Dupont, T. Mahmud, Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor, International Journal of Hydrogen Energy, 42(5) (2017) 2889-2903.
[20] M. Mundhwa, C.P. Thurgood, Methane steam reforming at low steam to carbon ratios over alumina and yttria-stabilized-zirconia supported nickel-spinel catalyst: Experimental study and optimization of microkinetic model, Fuel Processing Technology, 168 (2017) 27-39.
[21] J.M. Vásquez Castillo, T. Sato, N. Itoh, Microkinetic Analysis of the Methane Steam Reforming on a Ru-Supported Catalytic Wall Reactor, Industrial & Engineering Chemistry Research, 56(31) (2017) 8815-8822
[22] A. Saeedi, N. allahdadi, Numerical investigation of performance of hydrogen production process by production gas recirculation, AUT Journal of Mechanical Engineering, (2021), (in Persian).
[23] S.B. Haghi, G. Salehi, M. Torabi Azad, A. Lohrasbi Nichkoohi, Investigation of hydrogen production process by partial oxidation of natural gas in a large non-catalyticreformer and comparison with methane steam reforming process in a small catalytic reformer, AUT Journal of Mechanical Engineering, (2021), (in Persian).
[24] R.L.S. David G. Goodwin, Harry K. Moffat, and Bryan W. Weber, Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, in,
https://www.cantera.org, 2021.
[25] L.L. Raja, R.J. Kee, O. Deutschmann, J. Warnatz, L. D. Schmidt, A critical evaluation of Navier–Stokes, boundary-layer, and plug-flow models of the flow and chemistry in a catalytic-combustion monolith, Catalysis Today, 59(1) (2000) 47-60.
[26] R.J. Kee, M.E. Coltrin, P. Glarborg, Chemically Reacting Flow: Theory and Practice, Wiley, 2005.
[27] J. Thormann, L. Maier, P. Pfeifer, U. Kunz, O. Deutschmann, K. Schubert, Steam reforming of hexadecane over a Rh/CeO2 catalyst in microchannels: Experimental and numerical investigation, International Journal of Hydrogen Energy, 34(12) (2009) 5108-5120.
[28] R. O'hayre, S.-W. Cha, W. Colella, F.B. Prinz, Fuel cell fundamentals, John Wiley & Sons, 2016.
[29] K.H. Delgado, L. Maier, S. Tischer, A. Zellner, H. Stotz, O. Deutschmann, Surface Reaction Kinetics of Steam- and CO2-Reforming as Well as Oxidation of Methane over Nickel-Based Catalysts, Catalysts, 5(2) (2015).
[30] L. Maier, B. Schädel, K. Herrera Delgado, S. Tischer, O. Deutschmann, Steam Reforming of Methane Over Nickel: Development of a Multi-Step Surface Reaction Mechanism, Topics in Catalysis, 54(13) (2011) 845.
[31] C. Karakaya, L. Maier, O. Deutschmann, Surface Reaction Kinetics of the Oxidation and Reforming of CH4 over Rh/Al2O3 Catalysts, International Journal of Chemical Kinetics, 48(3) (2016) 144-160.
[32] J.-H. Ryu, K.-Y. Lee, H. La, H.-J. Kim, J.-I. Yang, H. Jung, Ni catalyst wash-coated on metal monolith with enhanced heat-transfer capability for steam reforming, Journal of Power Sources, 171(2) (2007) 499-505.
[33] B.T. Schädel, M. Duisberg, O. Deutschmann, Steam reforming of methane, ethane, propane, butane, and natural gas over a rhodium-based catalyst, Catalysis Today, 142(1) (2009) 42-51.
[34] R. Yukesh Kannah, S. Kavitha, Preethi, O. Parthiba Karthikeyan, G. Kumar, N.V. Dai-Viet, J. Rajesh Banu, Techno-economic assessment of various hydrogen production methods – A review, Bioresource Technology, 319 (2021) 124175.