[1] U. Guler, M.S.E. Sendi, M. Ghovanloo, A dual-mode passive rectifier for wide-range input power flow, in: 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), 2017, pp. 1376-1379.
[2] I. Sari, T. Balkan, H. Kulah, An electromagnetic micro power generator for wideband environmental vibrations, Sensors and Actuators A: Physical, 145-146 (2008) 405-413.
[3] P. Glynne-Jones, M.J. Tudor, S.P. Beeby, N.M. White, An electromagnetic, vibration-powered generator for intelligent sensor systems, Sensors and Actuators A: Physical, 110(1) (2004) 344-349.
[4] S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for microsystems applications, Measurement Science and Technology, 17(12) (2006) R175-R195.
[5] D. Zabeka, F. Morini, Solid state generators and energy harvesters for waste heat recovery and thermal energy harvesting, Thermal Science and Engineering Progress 9 (2019) 235–247.
[6] A. Landelle, N. Tauveron, P. Haberschill, R. Revellin, S. Colasson, Organic Rankine cycle design and performance comparison based on experimental database, Appl. Energy 204 (2017) 1172–1187.
[7] C.T. Hsu, G.Y. Huang, H.S. Chu, B. Yu, D.J. Yao, An effective seebeck coefficient obtained by experimental results of a thermoelectric generator module. Appl. Energy 88 (2011) 5173–5179.
[8] C.R. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhan, R. Vaish, Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 7 (2014) 3836–3856.
[9] R.A. Kishore, S. Priya, A review on design and performance of thermomagnetic devices. Renew. Sustain. Energy Rev. 81 (2018) 33–44.
[10] Y. Sato, N. Yoshida, Y. Tanabe, H. Fujita, N. Ooiwa, Characteristics of a new power generation system with application of a shape memory alloy engine. Electr. Eng. Jpn. 165 (2008) 8–15.
[11] A. Bibo, R. Masana, A. King, G. Li, M.F. Daqaq, Electromagnetic ferrofluid-based energy harvester, Physics Letters A, 376(32) (2012) 2163-2166.
[12] D.W. Oh, D.Y. Sohn, D.G. Byun, Y.S. Kim, Analysis of electromotive force characteristics and device implementation for ferrofluid based energy harvesting system, in: 2014 17th International Conference on Electrical Machines and Systems (ICEMS) (2014) 2033-2038.
[13] S. Alazmi, Y. Xu, M.F. Daqaq, Harvesting energy from the sloshing motion of ferrofluids in an externally excited container: Analytical modeling and experimental validation, Physics of Fluids, 28(7) (2016) 077101.
[14] R. Maroofiazar, M. Fahimi Farzam, Experimental investigation of energy harvesting from sloshing phenomenon: Comparison of Newtonian and non-Newtonian fluids, Energy 225 (2021) 120264.
[15] N. Yamada, Y. Kato, Experimental Study of Energy Harvesting from Boiling Phenomenon with Piezoelectric Devices, TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series B, 79 (2013) 1624-1636.
[16] S. Deguchi, A. Miyajima, H. Arimura, H. Banno, N. Kobayashi, N. Isu, K. Takagi, T. Inoue, T. Nozoe, S. Saito, and T. Sano, (2018) Piezoelectric Power Harvesting Process via Phase Changes of Low-Boiling-Point Medium Together with Water for Recovering Low-Temperature Heats. Journal of Power and Energy Engineering, 6 (2018) 65-77.