[1] E. Jamesahar, M. Sabour, M. Shahabadi, S. Mehryan, M. Ghalambaz, Mixed convection heat transfer by nanofluids in a cavity with two oscillating flexible fins: A fluid–structure interaction approach, Applied Mathematical Modelling, 82 (2020) 72-90.
[2] F. Selimefendigil, H.F. Öztop, Natural convection and melting of NEPCM in a corrugated cavity under the effect of magnetic field, Journal of Thermal Analysis and Calorimetry, 140(3) (2020) 1427-1442.
[3] A.V. Arasu, A.S. Mujumdar, Numerical study on melting of paraffin wax with Al2O3 in a square enclosure, International Communications in Heat and Mass Transfer, 39(1) (2012) 8-16.
[4] R. Akhilesh, A. Narasimhan, C. Balaji, Method to improve geometry for heat transfer enhancement in PCM composite heat sinks, International Journal of Heat and Mass Transfer, 48(13) (2005) 2759-2770.
[5] L.-L. Tian, X. Liu, S. Chen, Z.-G. Shen, Effect of fin material on PCM melting in a rectangular enclosure, Applied Thermal Engineering, 167 (2020) 114764.
[6] R. Roslan, H. Saleh, I. Hashim, Effect of rotating cylinder on heat transfer in a square enclosure filled with nanofluids, International Journal of Heat and Mass Transfer, 55(23-24) (2012) 7247-7256.
[7] F. Selimefendigil, H.F. Öztop, Mixed convection in a PCM filled cavity under the influence of a rotating cylinder, Solar Energy, 200 (2020) 61-75.
[8] K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, International journal of heat and mass transfer, 46(19) (2003) 3639-3653.
[9] D. Ganji, A. Malvandi, Natural convection of nanofluids inside a vertical enclosure in the presence of a uniform magnetic field, Powder technology, 263 (2014) 50-57.
[10] K.S. Hwang, J.-H. Lee, S.P. Jang, Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity, International Journal of Heat and Mass Transfer, 50(19-20) (2007) 4003-4010.
[11] R. Chand, G. Rana, On the onset of thermal convection in rotating nanofluid layer saturating a Darcy–Brinkman porous medium, International Journal of Heat and Mass Transfer, 55(21-22) (2012) 5417-5424.
[12] E. Abu-Nada, H.F. Oztop, Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid, International Journal of Heat and Fluid Flow, 30(4) (2009) 669-678.
[13] M. Farrokh, T. Goodarz, J. Samad, N. Javid, H. Amin, Analysis of Entropy Generation of a Magneto-Hydrodynamic Flow Through the Operation of an Unlooped Pulsating Heat Pipe, Journal of Heat Transfer, 140(8) (2018).
[14] F. Selimefendigil, M.A. Ismael, A.J. Chamkha, Mixed convection in superposed nanofluid and porous layers in square enclosure with inner rotating cylinder, International Journal of Mechanical Sciences, 124 (2017) 95-108.
[15] R. Sharma, P. Ganesan, Solidification of nano-enhanced phase change materials (NEPCM) in a trapezoidal cavity: A CFD study, Universal Journal of Mechanical Engineering, 2(6) (2014) 187-192.
[16] Y. Tian, C.-Y. Zhao, A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals, Energy, 36(9) (2011) 5539-5546.
[17] K. Lafdi, O. Mesalhy, S. Shaikh, Experimental study on the influence of foam porosity and pore size on the melting of phase change materials, Journal of Applied Physics, 102(8) (2007) 083549.
[18] S. Wu, D. Zhu, X. Zhang, J. Huang, Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM), Energy & fuels, 24(3) (2010) 1894-1898.
[19] M. Jourabian, M. Farhadi, A.A.R. Darzi, Outward melting of ice enhanced by Cu nanoparticles inside cylindrical horizontal annulus: Lattice Boltzmann approach, Applied Mathematical Modelling, 37(20-21) (2013) 8813-8825.
[20] S. Kashani, A. Ranjbar, M. Madani, M. Mastiani, H. Jalaly, Numerical study of solidification of a nano-enhanced phase change material (NEPCM) in a thermal storage system, Journal of Applied Mechanics and Technical Physics, 54(5) (2013) 702-712.
[21] S. Mehryan, E. Izadpanahi, M. Ghalambaz, A. Chamkha, Mixed convection flow caused by an oscillating cylinder in a square cavity filled with Cu–Al2O3/water hybrid nanofluid, Journal of Thermal Analysis and Calorimetry, 137(3) (2019) 965-982.
[22] M. Ghalambaz, A. Doostani, E. Izadpanahi, A. Chamkha, Phase-change heat transfer in a cavity heated from below: the effect of utilizing single or hybrid nanoparticles as additives, Journal of the Taiwan Institute of Chemical Engineers, 72 (2017) 104-115.
[23] J. Buongiorno, Convective Transport in Nanofluids, Journal of Heat Transfer, 128(3) (2005) 240-250.
[24] S. Barlak, O.N. Sara, A. Karaipekli, S. Yapıcı, Thermal conductivity and viscosity of nanofluids having nanoencapsulated phase change material, Nanoscale and Microscale Thermophysical Engineering, 20(2) (2016) 85-96.
[25] L. Chai, R. Shaukat, L. Wang, H.S. Wang, A review on heat transfer and hydrodynamic characteristics of nano/microencapsulated phase change slurry (N/MPCS) in mini/microchannel heat sinks, Applied Thermal Engineering, 135 (2018) 334-349.
[26] B. Chen, X. Wang, R. Zeng, Y. Zhang, X. Wang, J. Niu, Y. Li, H. Di, An experimental study of convective heat transfer with microencapsulated phase change material suspension: laminar flow in a circular tube under constant heat flux, Experimental Thermal and Fluid Science, 32(8) (2008) 1638-1646.
[27] K. Khanafer, K. Vafai, A critical synthesis of thermophysical characteristics of nanofluids, International journal of heat and mass transfer, 54(19-20) (2011) 4410-4428.
[28] A. Zaraki, M. Ghalambaz, A.J. Chamkha, M. Ghalambaz, D. De Rossi, Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: effects of size, shape and type of nanoparticles, type of base fluid and working temperature, Advanced Powder Technology, 26(3) (2015) 935-946.
[29] I. Abd. Karim, C. Hean Lee, A. J. Gil, J. Bonet, A two-step Taylor-Galerkin formulation for fast dynamics, Engineering Computations, 31(3) (2014) 366-387.
[30] M. Ghalambaz, A.J. Chamkha, D. Wen, Natural convective flow and heat transfer of nano-encapsulated phase change materials (NEPCMs) in a cavity, International journal of heat and mass transfer, 138 (2019) 738-749.
[31] C.-C. Liao, C.-A. Lin, Influence of Prandtl number on the instability of natural convection flows within a square enclosure containing an embedded heated cylinder at moderate Rayleigh number, Physics of Fluids, 27(1) (2015) 013603.