[1] D. Ranjan, J. Oakley, R. Bonazza, Shock-bubble interactions, Annual Review of Fluid Mechanics, 43 (2011) 117-140.
[2] N.J. Zabusky, Vortex paradigm for accelerated inhomogeneous flows: Visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov environments, Annual review of fluid mechanics, 31(1) (1999) 495-536.
[3] F. MARBLE, E. ZUKOSKI, J. Jacobs, G. Hendricks, Shock enhancement and control of hypersonic mixing and combustion, in: 26th Joint Propulsion Conference, 1990, pp. 1981.
[4] J. Yang, T. Kubota, E.E. Zukoski, A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity, Journal of Fluid Mechanics, 258 (1994) 217-244.
[5] M. Delius, F. Ueberle, W. Eisenmenger, Extracorporeal shock waves act by shock wave-gas bubble interaction, Ultrasound in medicine & biology, 24(7) (1998) 1055-1059.
[6] W. Eisenmenger, The mechanisms of stone fragmentation in ESWL, Ultrasound in medicine & biology, 27(5) (2001) 683-693.
[7] U. Hwang, K.A. Flanagan, R. Petre, CHANDRA X-ray observation of a mature cloud-shock interaction in the bright eastern knot region of Puppis A, The Astrophysical Journal, 635(1) (2005) 355.
[8] J. Lindl, Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Physics of plasmas, 2(11) (1995) 3933-4024.
[9] F. Denner, C.-N. Xiao, B.G. van Wachem, Pressure-based algorithm for compressible interfacial flows with acoustically-conservative interface discretisation, Journal of Computational Physics, 367 (2018) 192-234.
[10] V. Coralic, T. Colonius, Finite-volume WENO scheme for viscous compressible multicomponent flows, Journal of computational physics, 274 (2014) 95-121.
[11] R. Abgrall, How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach, Journal of Computational Physics, 125(1) (1996) 150-160.
[12] K.-M. Shyue, An efficient shock-capturing algorithm for compressible multicomponent problems, Journal of Computational Physics, 142(1) (1998) 208-242.
[13] G. Allaire, S. Clerc, S. Kokh, A five-equation model for the simulation of interfaces between compressible fluids, Journal of Computational Physics, 181(2) (2002) 577-616.
[14] A. Marquina, P. Mulet, A flux-split algorithm applied to conservative models for multicomponent compressible flows, Journal of Computational Physics, 185(1) (2003) 120-138.
[15] M. Ansari, A. Daramizadeh, Numerical simulation of compressible two-phase flow using a diffuse interface method, International journal of heat and fluid flow, 42 (2013) 209-223.
[16] X.Y. Hu, B. Khoo, N.A. Adams, F. Huang, A conservative interface method for compressible flows, Journal of Computational Physics, 219(2) (2006) 553-578.
[17] G. Perigaud, R. Saurel, A compressible flow model with capillary effects, Journal of Computational Physics, 209(1) (2005) 139-178.
[18] M.R. Baer, J.W. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, International journal of multiphase flow, 12(6) (1986) 861-889.
[19] A. Murrone, H. Guillard, A five equation reduced model for compressible two phase flow problems, Journal of Computational Physics, 202(2) (2005) 664-698.
[20] G. Allaire, S. Clerc, S. Kokh, A five-equation model for the numerical simulation of interfaces in two-phase flows, Comptes Rendus de l'Académie des Sciences-Series I-Mathematics, 331(12) (2000) 1017-1022.
[21] E.F. Toro, M. Spruce, W. Speares, Restoration of the contact surface in the HLL-Riemann solver, Shock waves, 4(1) (1994) 25-34.
[22] E.F. Toro, The Riemann problem for the Euler equations, in: Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, 2009, pp. 115-162.
[23] K.-M. Shyue, A volume-fraction based algorithm for hybrid barotropic and non-barotropic two-fluid flow problems, Shock Waves, 15(6) (2006) 407-423.
[24] D.R. van der Heul, C. Vuik, P. Wesseling, A conservative pressure-correction method for flow at all speeds, Computers & Fluids, 32(8) (2003) 1113-1132.
[25] P. Wesseling, Principles of computational fluid dynamics, Springer Science & Business Media, 2009.
[26] F. Moukalled, L. Mangani, M. Darwish, The finite volume method, in: The finite volume method in computational fluid dynamics, Springer, 2016, pp. 103-135.
[27] F.H. Harlow, A.A. Amsden, A numerical fluid dynamics calculation method for all flow speeds, Journal of Computational Physics, 8(2) (1971) 197-213.
[28] J. Van Doormaal, G. Raithby, B. McDonald, The segregated approach to predicting viscous compressible fluid flows, (1987).
[29] R.R. Nourgaliev, T.-N. Dinh, T.G. Theofanous, Adaptive characteristics-based matching for compressible multifluid dynamics, Journal of Computational Physics, 213(2) (2006) 500-529.
[30] R. Saurel, R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows, Journal of Computational Physics, 150(2) (1999) 425-467.
[31] L. Michael, N. Nikiforakis, The evolution of the temperature field during cavity collapse in liquid nitromethane. Part I: inert case, Shock Waves, 29(1) (2019) 153-172.
[32] S.-W. Ohl, C.-D. Ohl, Acoustic Cavitation in a Microchannel, in: Handbook of Ultrasonics and Sonochemistry, Springer Singapore, Singapore, 2016, pp. 99-135.
[33] S. Pan, S. Adami, X. Hu, N.A. Adams, Phenomenology of bubble-collapse-driven penetration of biomaterial-surrogate liquid-liquid interfaces, Physical Review Fluids, 3(11) (2018) 114005.
[34] J.-F. Haas, B. Sturtevant, Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities, Journal of Fluid Mechanics, 181 (1987) 41-76.
[35] G. Rudinger, L.M. Somers, Behaviour of small regions of different gases carried in accelerated gas flows, Journal of Fluid Mechanics, 7(2) (1960) 161-176.
[36] D. Ranjan, J. Niederhaus, B. Motl, M. Anderson, J. Oakley, R. Bonazza, Experimental investigation of primary and secondary features in high-Mach-number shock-bubble interaction, Physical review letters, 98(2) (2007) 024502.
[37] R.K.A.N, K.Mazaheri, Two-dimensional numerical study of shock collision with non-reactive bubble, Tarbiat Modares University Thesis, Tarbiat Modares University, 2012.(In Persian)
[38] X. Bai, M. Li, Simulating compressible two-phase flows with sharp-interface discontinuous Galerkin methods based on ghost fluid method and cut cell scheme, Journal of Computational Physics, 459 (2022) 111107.
[39] J.H. Niederhaus, J. Greenough, J. Oakley, D. Ranjan, M. Anderson, R. Bonazza, A computational parameter study for the three-dimensional shock–bubble interaction, Journal of Fluid Mechanics, 594 (2008) 85-124.
[40] J.W. Banks, D.W. Schwendeman, A.K. Kapila, W.D. Henshaw, A high-resolution Godunov method for compressible multi-material flow on overlapping grids, Journal of Computational Physics, 223(1) (2007) 262-297.
[41] B. Reimann, V. Hannemann, K. Hannemann, Computations of shock wave propagation with local mesh adaptation, in: Shock Waves, Springer, 2009, pp. 1383-1388.