تحلیل ارتعاشات و پایداری میکرولوله‌ی حامل سیال تحت تأثیر میدان‌های حرارتی، الکتریکی و مغناطیسی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه صنعتی سیرجان، سیرجان، ایران

2 دانشکده مهندسی مکانیک، دانشگاه شهید باهنر کرمان، کرمان، ایران

چکیده

در این پژوهش، به تحلیل ارتعاشات و پایداری میکرولوله‌های حامل سیال تحت تأثیر میدان‌های مغناطیسی، الکتریکی و حرارتی با استفاده از تئوری‌های کلاسیک، تنش کوپل اصلاح شده و گرادیان کرنش اصلاح شده پرداخته شده است. برای مدل‌سازی لوله از تئوری تیر اویلر-برنولی با شرایط مرزی مختلف اعم از یکسرگیردار-یکسرپین، دوسرگیردار و دوسرپین استفاده شده است. معادلات دیفرانسیل حاکم بر ارتعاشات میکرو لوله حامل سیال از روش توسعه یافته‌ی همیلتون استخراج شده و از روش توسعه یافته‌ی گالرکین جهت تبدیل معادلات با مشتقات جزئی به معادلات با مشتقات معمولی استفاده شده است. با تحلیل فرکانسی مسئله، به بررسی پارامترهای وابسته به اندازه، میدان‌های مغناطیسی، الکتریکی و حرارتی، شرایط مرزی مختلف بر روی مقادیر ویژه و سرعت بحرانی سیال پرداخته شده است. نتایج به دست آماده برای هر سه تئوری با یکدیگر مقایسه شده‌اند که نشان دادند، تئوری گرادیان کرنش اصلاح شده نسبت به تئوری تنش-کوپل اصلاح شده و تئوری کلاسیک، فرکانس‌های طبیعی و سرعت سیال بحرانی بیشتری پیش‌بینی می‌کند. تاثیرات میدان‌های مغناطیسی، الکتریکی و حرارتی به همراه شرایط مرزی مختلف بر روی مقادیر ویژه و سرعت سیال بحرانی مورد مطالعه قرار گرفته است. نتایج نشان دادند که پایداری مسئله با افزایش ضریب میدان مغناطیسی افزایش می‌یابد ولی با افزایش ضریب میدان‌های الکتریکی و حرارتی، کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Vibration and Stability Analysis of Micro-pipes Conveying Fluid under Magnetic, Electric, and Thermal Fields

نویسندگان [English]

  • Mohammad Hosseini 1
  • Afshin Hosseini 1
  • Reza Bahaadini 2
1 Department of Mechanical Engineering, Sirjan University of Technology
2 Department of Mechanical Engineering, Shaid Bahonar University of Kerman, Kerman, Iran
چکیده [English]

In this study, vibration and stability analysis of micro-pipes conveying fluid under magnetic, electric, and thermal fields using classical, modified coupled stress, and modified strain gradient theories are presented. The Euler-Bernoulli beam theory with clamped-pinned, clamped-clamped, and pinned-pinned boundary conditions is used for modeling the pipe. The differential equations governing the vibration of conveying fluid micro-pipe are derived through extended Hamilton’s method. Additionally, the extended Galerkin’s method is used to convert the governing partial differential equations into ordinary differential equations. The effects of size, boundary conditions, magnetic field, electric field, and thermal field on eigenvalues and critical velocity are investigated. The results indicated that the strain gradient theory predicts the highest natural frequencies and critical fluid velocities among the other two theories. The effects of magnetic, electric, and thermal fields along with different boundary conditions on eigenvalues and critical fluid velocity have been studied. It has also been concluded that the impact of these fields on the stability regions is different for different boundary conditions. Furthermore, the results showed that the stability of the micro-pipes increases with the increase of the magnetic field coefficient, but decreases with the increase of the coefficient of electric and thermal fields.

کلیدواژه‌ها [English]

  • Vibration
  • Micro-pipe conveying fluid
  • Magneto-electro-elastic material
  • Modified strain gradient theory
[1] W. Xia, L. Wang, Microfluid-induced vibration and stability of structures modeled as microscale pipes conveying fluid based on non-classical Timoshenko beam theory, Microfluidics and nanofluidics, 9(4-5) (2010) 955-962.
[2] L. Wang, Size-dependent vibration characteristics of fluid-conveying microtubes, Journal of Fluids and Structures, 26(4) (2010) 675-684.
[3] Q. Ni, Z. Zhang, L. Wang, Application of the differential transformation method to vibration analysis of pipes conveying fluid, Applied Mathematics and Computation, 217(16) (2011) 7028-7038.
[4] A. Amiri, I. Pournaki, E. Jafarzadeh, R. Shabani, G. Rezazadeh, Vibration and instability of fluid-conveyed smart micro-tubes based on magneto-electro-elasticity beam model, Microfluidics and Nanofluidics, 20(2) (2016) 38.
[5] D.A. Gomez-Gualdron, J.C. Burgos, J. Yu, P.B. Balbuena, Carbon nanotubes: engineering biomedical applications, Progress in molecular biology and translational science, 104 (2011) 175-245.
[6] C. Li, E.T. Thostenson, T.-W. Chou, Sensors and actuators based on carbon nanotubes and their composites: a review, Composites Science and Technology, 68(6) (2008) 1227-1249.
[7] O. Aydın, M. Avcı, Heat and fluid flow characteristics of gases in micropipes, International Journal of Heat and Mass Transfer, 49(9) (2006) 1723-1730.
[8] C.-H. Ke, N. Pugno, B. Peng, H. Espinosa, Experiments and modeling of carbon nanotube-based NEMS devices, Journal of the Mechanics and Physics of Solids, 53(6) (2005) 1314-1333.
[9] X. Wang, X. Wang, Numerical simulation for bending modulus of carbon nanotubes and some explanations for experiment, Composites Part B: Engineering, 35(2) (2004) 79-86.
[10] H.-L. Lee, W.-J. Chang, Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory, Journal of Applied Physics, 103(2) (2008) 024302.
[11] R.D. Mindlin, Second gradient of strain and surface-tension in linear elasticity, International Journal of Solids and Structures, 1(4) (1965) 417-438.
[12] N. Fleck, J. Hutchinson, A reformulation of strain gradient plasticity, Journal of the Mechanics and Physics of Solids, 49(10) (2001) 2245-2271.
[13] J. Yoon, C. Ru, A. Mioduchowski, Vibration and instability of carbon nanotubes conveying fluid, Composites Science and Technology, 65(9) (2005) 1326-1336.
[14] J. Yoon, C. Ru, A. Mioduchowski, Flow-induced flutter instability of cantilever carbon nanotubes, International Journal of Solids and Structures, 43(11) (2006) 3337-3349.
[15] B. Wang, K. Wang, Vibration analysis of embedded nanotubes using nonlocal continuum theory, Composites Part B: Engineering, 47 (2013) 96-101.
[16] L. Yin, Q. Qian, L. Wang, Strain gradient beam model for dynamics of microscale pipes conveying fluid, Applied Mathematical Modelling, 35(6) (2011) 2864-2873.
[17] X. Zhou, L. Wang, Vibration and stability of micro-scale cylindrical shells conveying fluid based on modified couple stress theory, Micro & Nano Letters, 7(7) (2012) 679-684.
[18] M. Hosseini, R. Bahaadini, Size dependent stability analysis of cantilever micro-pipes conveying fluid based on modified strain gradient theory, International Journal of Engineering Science, 101 (2016) 1-13.
[19] R. Ansari, R. Gholami, A. Norouzzadeh, S. Sahmani, Size-dependent vibration and instability of fluid-conveying functionally graded microshells based on the modified couple stress theory, Microfluidics and nanofluidics, 19(3) (2015) 509-522.
[20] B. Abbasnejad, R. Shabani, G. Rezazadeh, Stability analysis of a piezoelectrically actuated micro-pipe conveying fluid, Microfluidics and Nanofluidics, 19(3) (2015) 577-584.
[21] R. Bahaadini, M. Hosseini, Nonlocal divergence and flutter instability analysis of embedded fluid-conveying carbon nanotube under magnetic field, Microfluidics and Nanofluidics, 20(7) (2016) 108.
[22] R. Bahaadini, M. Hosseini, A. Jamalpoor, Nonlocal and surface effects on the flutter instability of cantilevered nanotubes conveying fluid subjected to follower forces, Physica B: Condensed Matter, 509 (2017) 55-61.
[23] M. Hosseini, A.Z.B. Maryam, R. Bahaadini, Forced vibrations of fluid-conveyed double piezoelectric functionally graded micropipes subjected to moving load, Microfluidics and Nanofluidics, 21(8) (2017) 134.
[24] M. Hosseini, R. Bahaadini, B. Jamali, Nonlocal instability of cantilever piezoelectric carbon nanotubes by considering surface effects subjected to axial flow, Journal of Vibration and Control, 24(9) (2018) 1809-1825.
[25] S. Kural, E. Özkaya, Size-dependent vibrations of a micro beam conveying fluid and resting on an elastic foundation, Journal of Vibration and Control, 23(7) (2017) 1106-1114.
[26] A.M. Dehrouyeh-Semnani, M. Nikkhah-Bahrami, M.R.H. Yazdi, On nonlinear stability of fluid-conveying imperfect micropipes, International Journal of Engineering Science, 120 (2017) 254-271.
[27] A. Farajpour, H. Farokhi, M.H. Ghayesh, S. Hussain, Nonlinear mechanics of nanotubes conveying fluid, International Journal of Engineering Science, 133 (2018) 132-143.
[28] A. Farajpour, H. Farokhi, M.H. Ghayesh, Mechanics of Fluid-Conveying Microtubes: Coupled Buckling and Post-Buckling, Vibration, 2(1) (2019) 102-115.
[29] R. Bahaadini, A.R. Saidi, M. Hosseini, On dynamics of nanotubes conveying nanoflow, International Journal of Engineering Science, 123 (2018) 181-196.
[30] R. Bahaadini, M. Hosseini, B. Jamali, Flutter and divergence instability of supported piezoelectric nanotubes conveying fluid, Physica B: Condensed Matter, 529 (2018) 57-65.
[31] R. Bahaadini, M.R. Dashtbayazi, M. Hosseini, Z. Khalili-Parizi, Stability analysis of composite thin-walled pipes conveying fluid, Ocean Engineering, 160 (2018) 311-323.
[32] R. Bahaadini, M. Hosseini, Flow-induced and mechanical stability of cantilever carbon nanotubes subjected to an axial compressive load, Applied Mathematical Modelling, 59 (2018) 597-613.
[33] R. Bahaadini, A.R. Saidi, M. Hosseini, Dynamic stability of fluid-conveying thin-walled rotating pipes reinforced with functionally graded carbon nanotubes, Acta Mechanica, 229(12) (2018) 5013-5029.
[34] M. Hosseini, R. Bahaadini, M. Makkiabadi, Application of the Green function method to flow-thermoelastic forced vibration analysis of viscoelastic carbon nanotubes, Microfluidics and Nanofluidics, 22(1) (2018) 1-15.
[35] R. Bahaadini, A.R. Saidi, M. Hosseini, Flow-induced vibration and stability analysis of carbon nanotubes based on the nonlocal strain gradient Timoshenko beam theory, Journal of Vibration and Control, 25(1) (2019) 203-218.
[36] R. Bahaadini, A.R. Saidi, Stability analysis of thin-walled spinning reinforced pipes conveying fluid in thermal environment, European Journal of Mechanics-A/Solids, 72 (2018) 298-309.
[37] M. Atashafrooz, R. Bahaadini, H.R. Sheibani, Nonlocal, strain gradient and surface effects on vibration and instability of nanotubes conveying nanoflow, Mechanics of Advanced Materials and Structures, 27(7) (2020) 586-598.
[38] M.H. Ghayesh, H. Farokhi, On the viscoelastic dynamics of fluid-conveying microtubes, International Journal of Engineering Science, 127 (2018) 186-200.
[39] A. Farajpour, H. Farokhi, M.H. Ghayesh, Chaotic motion analysis of fluid-conveying viscoelastic nanotubes, European Journal of Mechanics-A/Solids, 74 (2019) 281-296.