شبیه‌سازی حرکت میکروشناگران با الگوبرداری از روی اسپرم به روش المان محدود

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

2 دانشکده مهندسی مکانیک و هوافضا، دانشگاه موناش، ملبورن، استرالیا

3 دانشکده علوم پزشکی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

در این پژوهش حرکت میکروشناگر در یک سیال نیوتنی تراکم ناپذیر با استفاده از روش المان محدود در حالات دو و سه‌بعدی بررسی شده‌است. حرکت موجی ‌شکل در دم میکروشناگر باعث ایجاد نیروهای هیدرودینامیکی درون سیال می‌شود و نیروی عکس‌العمل آن، باعث به جلو راندن میکروشناگر می‌شود. برای بررسی این موضوع، معادله ناویر-استوکس با قانون نیوتن جفت شده و در ناحیه محاسباتی حل شده‌‌است. در قسمت اول این پژوهش، تأثیر پارامترهای هندسی، همچون عرض کانال و پارامترهای موجی، همچون دامنه و طول موج، بر سرعت میکروشناگر بررسی شد. در میان نتایج بدست آمده، رابطه بین طول موج و سرعت میکروشناگر مورد توجه قرار گرفت. نشان داده ‌شد که روند تغییرات سرعت در حالت دوبعدی قابل پیش‌بینی نبوده و ارتفاع کانال شدیداً بر این رابطه تأثیر می‌گذارد. در قسمت دوم این مطالعه، با استفاده از مدل گسترش داده شده به بررسی پدیده شنای هماهنگ در دو حالت دو و سه‌بعدی پرداخته و نشان داده ‌شد که میانگین سرعت شنا در حالت پهلو به پهلوی دو‌بعدی، پهلو به پهلوی سه‌بعدی و بالا-پایین سه‌بعدی، به ترتیب 12 درصد افزایش، 10 درصد کاهش و 7 درصد افزایش می‌یابد. در انتها نیز با بررسی توزیع فشار در دامنه محاسباتی و اطراف میکروشناگران می‌توان به این نتیجه رسید که دوقطبی‌های ایجاد ‌شده ناشی از ضربه دم میکروشناگران و جهت قرارگیری آن‌ها علت افزایش و یا کاهش میانگین سرعت شنا است.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of Sperm-Like Microswimmers Using Finite Element Method

نویسندگان [English]

  • Ali Heydari 1
  • Mohammad Zabetian Targhi 1
  • Soroush Zeaei 1
  • Reza Nosrati 2
  • Iman Halvaei 3
1 Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
2 Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Australia
3 Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
چکیده [English]

This research investigates the motion of microorganisms in an incompressible Newtonian fluid using the finite element method in 2D and 3D. The undulating motion generated inside a microswimmer's tail creates hydrodynamic forces within the fluid, which its reaction force propels the microswimmer forward. The Navier-Stokes equation is coupled to Newton's law and solved in the computational domain to simulate the microswimmer's motion. In the first part of this study, the effect of geometric parameters (channel width) and wave parameters (wave amplitude and wavelength) on the swimmer's velocity was investigated. The obtained results indicated that the trend of velocity changes in 2D is not predictable, and the channel height affects this relationship significantly. In the second part of this study, the synchronized swimming phenomenon in 2D and 3D was investigated using the developed model. The results showed that the average swimming velocity in 2D side-by-side, 3D side-by-side, and 3D top-bottom configurations increases by 12%, decreases by 10%, and increases by 7%, respectively. Finally, by examining the pressure distribution in the computational domain, it can be concluded that the force dipoles created by the microswimmers' undulating tails, and their position, are the reason behind the increase or decrease of the average swimming velocity.

کلیدواژه‌ها [English]

  • Microswimmers
  • Sperm
  • Hydrodynamic forces
  • Synchronized swimming
  • Wave
[1] E.A. Gaffney, H. Gadêlha, D.J. Smith, J.R. Blake, J.C. Kirkman-Brown, Mammalian sperm motility: Observation and theory, Annual Review of Fluid Mechanics, 43 (2011) 501-528.
[2] J. Elgeti, R.G. Winkler, G. Gompper, Physics of microswimmers - Single particle motion and collective behavior: A review, Reports on Progress in Physics, 78(5) (2015) 56601-56601.
[3] R. Nosrati, P.J. Graham, B. Zhang, J. Riordon, A. Lagunov, T.G. Hannam, C. Escobedo, K. Jarvi, D. Sinton, Microfluidics for sperm analysis and selection, Nature Reviews Urology, 14(12) (2017) 707-730.
[4] S. Palagi, P. Fischer, Bioinspired microrobots, Nature Reviews Materials, 3(6) (2018) 113-124.
[5] F.B. Tian, L. Wang, Numerical modeling of sperm swimming, Fluids, 6(2) (2021).
[6] B. Ahmadian, B. Vahidi, Response analysis of primary cilia of the cell to the oscillatory fluid flow by using fluid-structure interaction method, Amirkabir J. Mech. Eng., 53(Special Issue 5) (2021) 3293-3306. (In Persian)
[7] G. Taylor, Analysis of the Swimming of Microscopic Organisms, Proc. R. Soc. Lond. A, 209 (1951) 447-461.
[8] D.F. Katz, On the propulsion of micro-organisms near solid boundaries, J . Fluid Mech., 64(1) (1974) 39-49.
[9] G.J. Hancock, The Self-Propulsion of Microscopic Organisms through Liquids, Proc. R. Soc. Lond. A, 217 (1953) 96-121.
[10] H.I. Andersson, E. Celledoni, L. Ohm, B. Owren, B.K. Tapley, An integral model based on slender body theory, with applications to curved rigid fibers, Physics of Fluids, 33(4) (2021) 041904-041904.
[11] B.J. Walker, M.P. Curtis, K. Ishimoto, E.A. Gaffney, A regularised slender-body theory of non-uniform filaments, Journal of Fluid Mechanics, 899(A3) (2020) 1-18.
[12] R. Lottero-Leconte, C.A. Isidro Alonso, L. Castellano, S.P. Martinez, Mechanisms of the sperm guidance, an essential aid for meeting the oocyte, Translational Cancer Research, 6(Suppl 2) (2017) S427-S430.
[13] Y. Zhang, R.R. Xiao, T. Yin, W. Zou, Y. Tang, J. Ding, J. Yang, Generation of gradients on a microfluidic device: Toward a high-Throughput investigation of spermatozoa chemotaxis, PLoS ONE, 10(11) (2015) 1-14.
[14] A. Bahat, M. Eisenbach, I. Tur-Kaspa, Periovulatory increase in temperature difference within the rabbit oviduct, Human Reproduction, 20(8) (2005) 2118-2121.
[15] Q.Y. Liu, X.Y. Tang, D.D. Chen, Y.Q. Xu, F.B. Tian, Hydrodynamic study of sperm swimming near a wall based on the immersed boundary-lattice Boltzmann method, Engineering Applications of Computational Fluid Mechanics, 14(1) (2020) 853-870.
[16] G. Li, A.M. Ardekani, Collective Motion of Microorganisms in a Viscoelastic Fluid, Physical Review Letters, 117(11) (2016) 1-5.
[17] R. Nosrati, A. Driouchi, C.M. Yip, D. Sinton, Two-dimensional slither swimming of sperm within a micrometre of a surface, Nature Communications, 6(1) (2015) 1-9.
[18] S.F. Schoeller, W.V. Holt, E.E. Keaveny, Collective dynamics of sperm cells: Collective dynamics of sperm cells, Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1807) (2020).
[19] Y. Yang, Cooperation of Sperm in Two Dimensions: Synchronization, Attraction and Aggregation through Hydrodynamic Interactions, Physical Review E, 78(6) (2009) 061903.
[20] D.M. Woolley, R.F. Crockett, W.D.I. Groom, S.G. Revell, A study of synchronisation between the flagella of bull spermatozoa , with related observations,  (2009) 2215-2223.
[21] I. Llopis, I. Pagonabarraga, M. Cosentino Lagomarsino, C.P. Lowe, Cooperative motion of intrinsic and actuated semiflexible swimmers, Physical Review E, 87(3) (2013) 1-12.
[22] B.J. Walker, K. Ishimoto, E.A. Gaffney, The pairwise hydrodynamic interactions of synchronized spermatozoa, Physical Review Fluids, 4(9) (2019) 1-14.
[23] F.-h. Qin, W.-x. Huang, H.J. Sung, Simulation of small swimmer motions driven by tail / flagellum beating, Computers and Fluids, 55 (2012) 109-117.
[24] F.M. White, Fluid mechanics, 8th ed., McGraw-Hill, New York, NY, 2016.
[25] O.Vera, M.G. Mufioz, K.Jaffe, Wave parameters of the sperm flagellum as predictors of human spermatozoa motility, ANDROLOGIA, 30(3) (1998) 153-157.