[1] E.A. Gaffney, H. Gadêlha, D.J. Smith, J.R. Blake, J.C. Kirkman-Brown, Mammalian sperm motility: Observation and theory, Annual Review of Fluid Mechanics, 43 (2011) 501-528.
[2] J. Elgeti, R.G. Winkler, G. Gompper, Physics of microswimmers - Single particle motion and collective behavior: A review, Reports on Progress in Physics, 78(5) (2015) 56601-56601.
[3] R. Nosrati, P.J. Graham, B. Zhang, J. Riordon, A. Lagunov, T.G. Hannam, C. Escobedo, K. Jarvi, D. Sinton, Microfluidics for sperm analysis and selection, Nature Reviews Urology, 14(12) (2017) 707-730.
[4] S. Palagi, P. Fischer, Bioinspired microrobots, Nature Reviews Materials, 3(6) (2018) 113-124.
[5] F.B. Tian, L. Wang, Numerical modeling of sperm swimming, Fluids, 6(2) (2021).
[6] B. Ahmadian, B. Vahidi, Response analysis of primary cilia of the cell to the oscillatory fluid flow by using fluid-structure interaction method, Amirkabir J. Mech. Eng., 53(Special Issue 5) (2021) 3293-3306. (In Persian)
[7] G. Taylor, Analysis of the Swimming of Microscopic Organisms, Proc. R. Soc. Lond. A, 209 (1951) 447-461.
[8] D.F. Katz, On the propulsion of micro-organisms near solid boundaries, J . Fluid Mech., 64(1) (1974) 39-49.
[9] G.J. Hancock, The Self-Propulsion of Microscopic Organisms through Liquids, Proc. R. Soc. Lond. A, 217 (1953) 96-121.
[10] H.I. Andersson, E. Celledoni, L. Ohm, B. Owren, B.K. Tapley, An integral model based on slender body theory, with applications to curved rigid fibers, Physics of Fluids, 33(4) (2021) 041904-041904.
[11] B.J. Walker, M.P. Curtis, K. Ishimoto, E.A. Gaffney, A regularised slender-body theory of non-uniform filaments, Journal of Fluid Mechanics, 899(A3) (2020) 1-18.
[12] R. Lottero-Leconte, C.A. Isidro Alonso, L. Castellano, S.P. Martinez, Mechanisms of the sperm guidance, an essential aid for meeting the oocyte, Translational Cancer Research, 6(Suppl 2) (2017) S427-S430.
[13] Y. Zhang, R.R. Xiao, T. Yin, W. Zou, Y. Tang, J. Ding, J. Yang, Generation of gradients on a microfluidic device: Toward a high-Throughput investigation of spermatozoa chemotaxis, PLoS ONE, 10(11) (2015) 1-14.
[14] A. Bahat, M. Eisenbach, I. Tur-Kaspa, Periovulatory increase in temperature difference within the rabbit oviduct, Human Reproduction, 20(8) (2005) 2118-2121.
[15] Q.Y. Liu, X.Y. Tang, D.D. Chen, Y.Q. Xu, F.B. Tian, Hydrodynamic study of sperm swimming near a wall based on the immersed boundary-lattice Boltzmann method, Engineering Applications of Computational Fluid Mechanics, 14(1) (2020) 853-870.
[16] G. Li, A.M. Ardekani, Collective Motion of Microorganisms in a Viscoelastic Fluid, Physical Review Letters, 117(11) (2016) 1-5.
[17] R. Nosrati, A. Driouchi, C.M. Yip, D. Sinton, Two-dimensional slither swimming of sperm within a micrometre of a surface, Nature Communications, 6(1) (2015) 1-9.
[18] S.F. Schoeller, W.V. Holt, E.E. Keaveny, Collective dynamics of sperm cells: Collective dynamics of sperm cells, Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1807) (2020).
[19] Y. Yang, Cooperation of Sperm in Two Dimensions: Synchronization, Attraction and Aggregation through Hydrodynamic Interactions, Physical Review E, 78(6) (2009) 061903.
[20] D.M. Woolley, R.F. Crockett, W.D.I. Groom, S.G. Revell, A study of synchronisation between the flagella of bull spermatozoa , with related observations, (2009) 2215-2223.
[21] I. Llopis, I. Pagonabarraga, M. Cosentino Lagomarsino, C.P. Lowe, Cooperative motion of intrinsic and actuated semiflexible swimmers, Physical Review E, 87(3) (2013) 1-12.
[22] B.J. Walker, K. Ishimoto, E.A. Gaffney, The pairwise hydrodynamic interactions of synchronized spermatozoa, Physical Review Fluids, 4(9) (2019) 1-14.
[23] F.-h. Qin, W.-x. Huang, H.J. Sung, Simulation of small swimmer motions driven by tail / flagellum beating, Computers and Fluids, 55 (2012) 109-117.
[24] F.M. White, Fluid mechanics, 8th ed., McGraw-Hill, New York, NY, 2016.
[25] O.Vera, M.G. Mufioz, K.Jaffe, Wave parameters of the sperm flagellum as predictors of human spermatozoa motility, ANDROLOGIA, 30(3) (1998) 153-157.