[1] R. Xiang, S. Park, K. Lee, Effects of cone dimension on cyclone performance, Journal of Aerosol Science, 32(4) (2001) 549-561.
[2] A. Avci, I. Karagoz, Effects of flow and geometrical parameters on the collection efficiency in cyclone separators, Journal of Aerosol Science, 34(7) (2003) 937-955.
[3] Z. Xiong, Z. Ji, X. Wu, Development of a cyclone separator with high efficiency and low pressure drop in axial inlet cyclones, Powder Technology, 253 (2014) 644-649.
[4] T.-C. Hsiao, S.-H. Huang, C.-W. Hsu, C.-C. Chen, P.-K. Chang, Effects of the geometric configuration on cyclone performance, Journal of Aerosol Science, 86 (2015) 1-12.
[5] Y. Yao, Z. Huang, M. Zhang, H. Yang, J. Lyu, J. Wang, Effects of the Y-shape stud and outer insulating layer on heat dissipation and wall temperature of the hot cyclone in a circulating fluidized bed boiler, Applied Thermal Engineering, 204 (2022) 117989.
[6] S. Venkatesh, R.S. Kumar, S. Sivapirakasam, M. Sakthivel, D. Venkatesh, S.Y. Arafath, Multi-objective optimization, experimental and CFD approach for performance analysis in square cyclone separator, Powder Technology, 371 (2020) 115-129.
[7] R. Shastri, L.S. Brar, Numerical investigations of the flow-field inside cyclone separators with different cylinder-to-cone ratios using large-eddy simulation, Separation and Purification Technology, 249 (2020) 117149.
[8] M. Wasilewski, L.S. Brar, G. Ligus, Experimental and numerical investigation on the performance of square cyclones with different vortex finder configurations, Separation and Purification Technology, 239 (2020) 116588.
[9] H.-T. Kim, K. Lee, M. Kuhlman, Exploratory design modifications for enhancing cyclone performance, Journal of aerosol science, 32(10) (2001) 1135-1146.
[10] B. Zhao, H. Shen, Y. Kang, Development of a symmetrical spiral inlet to improve cyclone separator performance, Powder Technology, 145(1) (2004) 47-50.
[11] M. Wasilewski, L.S. Brar, G. Ligus, Effect of the central rod dimensions on the performance of cyclone separators-optimization study, Separation and Purification Technology, 274 (2021) 119020.
[12] M. Mofarrah, Y. Hojjat, S. Mashayekh, Z. Liu, K. Yan, Introduction and simulation of a small electro cyclone for collecting indoor pollen particles, Advanced Powder Technology, 33(1) (2022) 103384.
[13] K. Ehara, Aerosol mass spectrometer and method of classifying aerosol particles according to specific mass, in, Google Patents, 1995.
[14] J. Olfert, N. Collings, New method for particle mass classification—the Couette centrifugal particle mass analyzer, Journal of Aerosol Science, 36(11) (2005) 1338-1352.
[15] J. Olfert, A numerical calculation of the transfer function of the fluted centrifugal particle mass analyzer, Aerosol science and technology, 39(10) (2005) 1002-1009.
[16] O. Panahi, A.M. Movahed, H.R. Nazif, Investigation of the effects of geometry and intake conditions on electrocyclone efficiency, in: Second national conference on micro/nano technology, Qazvin, 2020. (in Persian)
[17] W. Hinds, Aerosol Technology: properties, behavior and measurement of airborne particles. 2ª edição, New York: Willey Interscience Publication, John Willey & Sons Inc, (1998).
[18] F. Sotiropoulos, S. Abdallah, The discrete continuity equation in primitive variable solutions of incompressible flow, Journal of Computational Physics, 95(1) (1991) 212-227.
[19] B. Yu, W.-Q. Tao, J.-J. Wei, Y. Kawaguchi, T. Tagawa, H. Ozoe, Discussion on momentum interpolation method for collocated grids of incompressible flow, Numerical Heat Transfer: Part B: Fundamentals, 42(2) (2002) 141-166.
[20] D. Wilcox, Turbulence modeling for CFD (Vol. 2, pp. 103-217), La Canada, CA: DCW Industries, (1998).
[21] B. Murthy, J. Joshi, Assessment of standard k–ε, RSM and LES turbulence models in a baffled stirred vessel agitated by various impeller designs, Chemical engineering science, 63(22) (2008) 5468-5495.
[22] F. Pereira, C. Ataíde, M. Barrozo, CFD Approach using a discrete phase model for annular flow analysis, Latin American applied research, 40(1) (2010) 53-60.
[23] F.M. White, J. Majdalani, Viscous fluid flow, McGraw-Hill New York, 2006.
[24] J.R. Taylor, Post-Use Review: Classical Mechanics, in, American Association of Physics Teachers, 2004.
[25] O. Panahi, A.M. Movahed, H.R. Nazif, Size classification of combstion generated nanoparticles using cyclone in: Second national conference on micro/nano technology, Qazvin, 2020. (in Persian)
[26] A. Kapali, H. Neopane, S. Chitrakar, A. Kayastha, O. Shrestha, Experimental and CFD study of influence of sediment size on efficiency of hydrocyclone for use as sediment separation device, in: Journal of Physics: Conference Series, IOP Publishing, 2020, pp. 012014.
[27] M. Dasar, R.S. Patil, Investigations on various characteristics of novel cyclone separator with helical square fins, Separation Science and Technology, 55(16) (2020) 2994-3011.
[28] B.-y. Cui, D.-z. Wei, S.-l. Gao, W.-g. Liu, Y.-q. Feng, Numerical and experimental studies of flow field in hydrocyclone with air core, Transactions of nonferrous metals society of china, 24(8) (2014) 2642-2649.
[29] L.Y. Hu, L.X. Zhou, J. Zhang, M. Shi, Studies on strongly swirling flows in the full space of a volute cyclone separator, AIChE Journal, 51(3) (2005) 740-749.