مقایسه روش‌های شبکه عصبی مصنوعی در مدل‌سازی فرایند تراش کاری ماده مرکب زمینه پلیمری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان

2 کارشناس ارشد، مهندسی مکانیک، هنرستان شهید چمران قائن

چکیده

در این تحقیق ماده مرکب زمینه اپوکسی پرشده با ذرات آلومینیم تهیه گردیده و با تغییر شرایط مختلف تراش‌کاری شامل: سرعت برش، کسر وزنی ذرات، عمق برش و نرخ پیشروی از قطعات مواد مرکب براده‌برداری صورت گرفته است. سپس زبری سطح قطعات اندازه‌گیری شده و برای پیش‌بینی اثر چهار عامل تراش‌کاری بر زبری سطح قطعات، با استفاده از دو نوع شبکه عصبی شامل: شبکه عصبی چند لایه پرسپترون و شبکه عصبی با تابع پایه شعاعی، مدل‌سازی انجام شده است. ضرایب همبستگی بین داده‌های خروجی مدل‌ها و داده‌های تجربی نشان داده است که شبکه چند لایه پروسپترون نسبت به شبکه با تابع پایه شعاعی انطباق بهتری با نتایج آزمایشگاهی نشان می‌دهد (ضریب همبستگی 835/0 برای شبکه چند لایه پرسپترون و 524/0 برای شبکه با تابع پایه شعاعی). به علت دارا بودن ضریب همبستگی بالاتر در شبکه عصبی چند لایه پرسپترون، این شبکه برای مدل‌سازی تاثیر عوامل تراش‌کاری بر زبری سطح پیشنهاد شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of Artificial Neural Network Methods for Modeling of Turning of Polymer Matrix Composite

نویسندگان [English]

  • M. R. Dashtbayazi 1
  • M. Ghanbarian 2
چکیده [English]

In this research, polymer matrix composite filled with aluminum particles was synthesized and turned with different machining condition namely: cutting speed, weight fraction of particle, depth of cut and feed. Then, surface roughness was measured and two artificial neural networks models Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) were developed to estimate effects of four turning parameters on surface roughness. Correlation between training data and experimental data were shown that MLP network was better than RBF as a compatible network (correlations were 0.835 for MLP network and 0.542 for RBF network). Because of higher correlation for MLP network, this network was proposed as a model for investigation the effects of turning parameters on surface roughness. a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

کلیدواژه‌ها [English]

  • Turning
  • Polymer Matrix Composite
  • Surface roughness
  • MLP Neural Network
  • RBF Neural Network
[1] فضلی، محمد؛ رضاعی، سید مهدی؛ زارعی نژاد، محمد؛"بررسی،آزمایش و بهبود عملکرد عملگرمیکرونی در سنگ زنی دقیق بکمک شبکه عصبی"، نشریه علمی پژوهشی امیرکبیر 104 ، زمستان - )مهندسی مکانیک(، دوره 45 ، شماره 2، صفح 87 .1392
[2] قریشی، مجید؛ عصارزاده، سعید؛ "پی شبینی نرخ براده برداری و زبری سطح در فرایند ماشینکاری تخلیه الکتریکی بر اساس مدلهای شبکه عصبی"، مهندسی مکانیک مدرس، دوره 6، شماره 1، صفحه . 102-87 ، شهریور 1385
[3] مهدوی نژاد، رمضانعلی؛ تمیمی، کامران؛ "پیش بینی زبری سطح در ترا شکاری خشک به کمک شبک ههای فازی- عصبی - تطبیقی"، نشریه دانشکده فنی، دوره 43 ، شماره 1، صفحه 110. 103 ، بهار 1388
[4] Teti, R.; “Machining of Composite Materials”, CIRP Annals - Manufacturing Technology, Vol. 51: pp 611-634, 2002.
[5] Bishay, I.K.; Abd-El-Messieh, S.L.; Mansour, S.H.;“Electrical, mechanical and thermal properties of polyvinyl chloride composites filled with aluminum powder“, Materials and Design, Vol. 32: pp 62-68, 2011.
[6] Choi, S.; Kim, J.; “Thermal conductivity of epoxy composites with a binary-particle system of aluminum
oxide and aluminum nitride fillers”, Composites Part B: Engineering, Vol. 51: pp 140-147, 2013.
[7] Zhou, W.; Wang, C.; Ai, T.; Wu, K.; Zhao, F.; Gu, H.;“A novel fiber-reinforced polyethylene composite with
added silicon nitride particles for enhanced thermal conductivity”, Composites Part A: Applied Science and Manufacturing, Vol. 40: pp 830-836, 2009.
[8] Basavarajappa, S.; Ellangovan, S.; “Dry sliding wear characteristics of glass–epoxy composite filled with
silicon carbide and graphiteparticles”, Wear, Vol. 296:pp 491-496, 2012.
[9] Fu, S.Y.; Feng, X.Q.; Lauke, B.; Mai, Y.W.; “Effects of particle size, particle/matrix interface adhesion
and particle loading on mechanical properties of particulate–polymer composites”, Composites Part B:Engineering, Vol. 39: pp 933-961, 2008.
[10] Kim, H.J.; Jung, D.H.; Jung, I.H.; Cifuentes, J.I.;Rhee, K.Y.; Hui, D.; “Enhancement of Mechanical Properties of Aluminium/Epoxy Composites with Silane Functionalization of Aluminium Powder”,Composites Part B: Engineering, Vol. 43: pp. 1743-1748, 2012.
[11] Chung, S.; Im, Y.; Kim, H.; Park, S.; Jeong, H.;“Evaluation for Micro Scale Structures Fabricated Using Epoxy-Aluminum Particle Composite and Its Application”, Journal of Materials Processing Technology, Vol. 160: pp 168-173, 2005.
[12] Goyanes, S.; Rubiolo, G.; Marzocca, A.; Salgueiro, W.; Somoza, A.; Consolati, G. I.; Mondragon, G.; “Yield and internal stresses in aluminum filled epoxy resin. A compression test and positron annihilation analysis”, olymer, Vol. 44: pp 3193-3199, 2003.
[13] Miko, E.; Nowakowski, Ł.; “Analysis and Verification of Surface Roughness Constitution Model After Machining Process“, Procedia Engineering, Vol.39: pp 395-404, 2012.
[14] Benardos, P.G.; Vosniakos, G.C.; “Predicting surface roughness in machining: a review”, International Journal of Machine Tools and Manufacture, Vol. 43: pp 833-844, 2003.
[15] Dandekar, C.R.; Shin, Y.C.; “Modeling of machining of composite materials: A review”, International
Journal of Machine Tools and Manufacture, Vol. 57:pp 102-121, 2012.
[16] Raj, K.H.; Sharma, R.S.; Srivastava, S.; Patvardhan, C.; “Modeling of manufacturing processes with ANNs
for intelligent manufacturing”, International Journal of Machine Tools and Manufacture, Vol. 40: pp 851-868,
2000.
[17] Gururaja, S.; Ramulu, M.; Pedersen, W.; “Machining of MMCs a Review”, Machining Science and
Technology, Vol. 17: pp 41–73, 2013.
[18] Zhang, Z.; Friedrich, K.; “Artificial neural networks applied to polymer composites: a review”, Composites
Science and Technology, Vol. 63: pp 2029-2044, 2003.
[19] http://www.pmpcompany.ir.
[20] DIN EN ISO 4287:2010-07, Geometrical Product Specifications (GPS) - Surface texture: Profile method
- Terms, definitions and surface texture parameters (ISO 4287:1997).
[21] Sheikh-Ahmad, G.Y.; “Machining of Polymer Composites”, Springer Science, New York, USA,2009.
[22] Xiao, K.Q.; Zhang, L.C.; “The Role of Viscous Deformation in the Machining of Polymers”.International Journal of Mechancial Sciences, Vol. 44:pp 2317–2336, 2002.
[23] El-Sonbaty, I.; Khashaba, U.A.; Machaly, T.;“Factors Affecting the Machinability of GFR/Epoxy Composites”, Composite Structures, Vol. 63: pp 329-338, 2004.
[24] Zunjarrao, S.C.; Singh, R.P.; “Characterization of the Fracture Behavior of Epoxy Reinforced with Nanometer and Micrometer Sized Aluminum Particles”, Composites Science and Technology, Vol.66: pp 2296-2305, 2006.
[25] Pendse, D.M.; Joshi, S.S.; “Modeling and Optimization of Machining Process in Discontinuously Reinforced
Aluminum Matrix Composites”, Machining Science and Technology: An International Journal, Vol. 8: pp 85–102, 2004.
[26] Basheer, A.C.; Dabade, U.A.; Joshi, S.S.;Bhanuprasad, V.V.; Gadre, V.M.; “Modeling of Surface Roughness in Precision Machining of Metal Matrix Composites Using ANN”, Journal of Materials Processing Technology, Vol. 197: pp 439-444, 2008.
[27] An, S.-O.; Lee, E.-S.; Noh, S.-L.; “A Study on the Cutting Characteristics of Glass Fiber Reinforced Plastics with Respect to Tool Materials and Geometries”, Vol. 68: pp 60-67, 1997.
[28] Carr. J.W.; Feger, C.; “Ultraprecision Machining of Polymers”, Precision Engineering. Vol. 15: pp 221–237, 1993.
[29] Hagan, M.T.; Demuth, H.B.; Beale, M.H.; “Neural Network Design”, PWS Publishing, Boston, 1996.
[30] The Math Works Inc., Product, Neural Network Toolbox Version 7.6 MATLAB® 7.6 Release 14 Service Pack 3, 2008.