[1]J. Lopez, M. Gonzalez, J.C. Viera, C. Blanco, Fast-charge in lithium-ion batteries for portable applications, in: INTELEC 2004. 26th Annual International Telecommunications Energy Conference, IEEE, (2004) 19–24.
[۲] C. Zhao, W. Cao, T. Dong, F. Jiang, Thermal behavior study of discharging/charging cylindrical lithium-ion battery module cooled by channeled liquid flow, International Journal of Heat and Mass Transfer. 120 (2018) 751–762.
[۳] X. Zhang, X. Chang, Y. Shen, Y. Xiang, Electrochemical-electrical-thermal modeling of a pouch-type lithium - ion battery: An application to optimize temperature distribution, Journal of Energy Storage. 11 (2017) 249–257.
[۴] A.A. Pesaran, S. Santhanagopalan, G.-H. Kim, Addressing the impact of temperature extremes on large format Li-lon batteries for vehicle applications, Advanced and Fuels Research Energy Storage (2013).
[۵] A.A. Pesaran, Battery thermal models for hybrid vehicle simulations, Journal of Power Sources. 110 (2002) 377–382.
[۶] A. Jarrett, I.Y. Kim, Design optimization of electric vehicle battery cooling plates for thermal performance, Journal of Power Sources. 196 (2011) 10359–10368.
[۷] J. Kim, J. Oh, H. Lee, Review on battery thermal management system for electric vehicles, Applied Thermal Engineering. 149 (2019) 192–212.
[۸] S.S. Zhang, K. Xu, T.R. Jow, The low temperature performance of Li-ion batteries, Journal of Power Sources. 115 (2003) 137–140.
[۹] Z. Lei, Y. Zhang, X. Lei, Improving temperature uniformity of a lithium-ion battery by intermittent heating method in cold climate, International Journal of Heat and Mass Transfer. 121 (2018) 275–281.
[۱۰] J. Jaguemont, L. Boulon, Y. Dubé, A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures, Applied Energy. 164 (2016) 99–114.
[۱۱] B. Ziv, V. Borgel, D. Aurbach, J.-H. Kim, X. Xiao, B.R. Powell, Investigation of the reasons for capacity fading in Li-Ion battery cells, Journal of the Electrochemical Society. 161 (2014) A1672-A1680.
[۱۲] J. Wang, J. Purewal, P. Liu, J. Hicks-Garner, S. Soukazian, E. Sherman, A. Sorenson, L. Vu, H. Tataria, M.W. Verbrugge, Degradation of lithium - ion batteries employing graphite negatives and nickel–cobalt–manganese oxide+ spinel manganese oxide positives: Part 1, aging mechanisms and life estimation, Journal of Power Sources. 269 (2014) 937–948.
[۱۳] Z. Qian, Y. Li, Z. Rao, Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling, Energy Conversion and Management. 126 (2016) 622–631.
[۱۴] L.W. Jin, P.S. Lee, X.X. Kong, Y. Fan, S.K. Chou, Ultra-thin mini channel LCP for EV battery thermal management, Applied Energy. 113 (2014) 1786–1794.
[۱۵] S. Basu, K.S. Hariharan, S.M. Kolake, T. Song, D.K. Sohn, T. Yeo, Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system, Applied Energy. 181 (2016) 1–13.
[۱۶] K. Chen, M. Song, W. Wei, S. Wang, Design of the structure of battery pack in parallel air-cooled battery thermal management system for cooling efficiency improvement, International Journal of Heat and Mass Transfer. 132 (2019) 309–321.
[۱۷] R. Jilte, A. Afzal, S. Panchal, A novel battery thermal management system using nano-enhanced phase change materials, Energy. 219 (2021) 119564.
[۱۸] Q. Huang, X. Li, G. Zhang, J. Deng, C. Wang, Thermal management of Lithium-ion battery pack through the application of flexible form-stable composite phase change materials, Applied Thermal Engineering. 183 (2021) 116151.
[۱۹] R. Taherian, Application of Polymer-Based Composites: Bipolar plate of PEM fuel cells, plastics design library, William Andrew, (2019) 183–237.
[۲۰] F.A. de Bruijn, R.C. Makkus, R.K.A.M. Mallant, G.J.M. Janssen, Chapter Five Materials for State-of-the-Art PEM Fuel Cells, and Their Suitability for Operation Above 100°C, Advances in Fuel Cell, Elsevier Science, (2007) 235–336.
[۲۱] G. Liang, L. Zheng, N. Zhu, A. Gu, Dielectric polymer materials with high thermal stability, plastics design library, (2018) 383–427.
[۲۲] M.S. Patil, J.-H. Seo, M.-Y. Lee, A novel dielectric fluid immersion cooling technology for Li-ion battery thermal management, Energy Conversion and Management. 229 (2021) 113715.
[۲۳] T. Zhang, Q. Gao, Y. Gu, Y. li, Studies on thermal management of lithium-ion battery using non-metallic heat exchanger, Applied Thermal Engineering. 182 (2021) 116095.
[۲۴] T. Deng, Y. Ran, G. Zhang, Y. Yin, Novel leaf-like channels for cooling rectangular lithium - ion batteries, Applied Thermal Engineering. 150 (2019) 1186–1196.
[۲۵] J. Xun, R. Liu, K. Jiao, Numerical and analytical modeling of lithium - ion battery thermal behaviors with different cooling designs, Journal of Power Sources. 233 (2013) 47–61.
[۲۶] G. Karimi, X. Li, Thermal management of lithium‐ion batteries for electric vehicles, International Journal of Energy Research. 37 (2013) 13–24.
[۲۷] R. Fan, C. Zhang, Y. Wang, C. Ji, Z. Meng, L. Xu, Y. Ou, C.S. Chin, Numerical study on the effects of battery heating in cold climate, Journal of Energy Storage. 26 (2019) 100969.
[۲۸] P. Shamsizadeh, E. Afshari, M.M. Dehkordi, Design of membrane humidifier using obstacles in the flow channels for ventilator, Applied Thermal Engineering. (2021) 117265.
[29] P. Shamsizadeh, E. Afshari, Numerical modeling of a membrane humidifier for mechanical ventilation, International Communications in Heat and Mass Transfer. 132 (2022) 105931.
[30] A. Gharehghani, J. Gholami, P. Shamsizadeh, S. Mehranfar, Effect analysis on performance improvement of battery thermal management in cold weather, Journal of Energy Storage. 45 (2022) 103728.