[1] N.-T. Nguyen, G. Zhu, Y.-C. Chua, V.-N. Phan, S.-H. Tan, Magnetowetting and sliding motion of a sessile ferrofluid droplet in the presence of a permanent magnet, Langmuir, 26(15) (2010) 12553-12559.
[2] A.G. Hadd, S.C. Jacobson, J.M. Ramsey, Microfluidic assays of acetylcholinesterase inhibitors, Analytical Chemistry, 71(22) (1999) 5206-5212.
[3] E. Lagally, I. Medintz, R. Mathies, Single-molecule DNA amplification and analysis in an integrated microfluidic device, Analytical chemistry, 73(3) (2001) 565-570.
[4] Z.Z. Chong, S.H. Tan, A.M. Gañán-Calvo, S.B. Tor, N.H. Loh, N.-T. Nguyen, Active droplet generation in microfluidics, Lab on a Chip, 16(1) (2016) 35-58.
[5] P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up, Lab on a Chip, 6(3) (2006) 437-446.
[6] S.-H. Tan, N.-T. Nguyen, L. Yobas, T.G. Kang, Formation and manipulation of ferrofluid droplets at a microfluidic T-junction, Journal of Micromechanics and Microengineering, 20(4) (2010) 045004.
[7] T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake, Dynamic pattern formation in a vesicle-generating microfluidic device, Physical review letters, 86(18) (2001) 4163.
[8] S.L. Anna, N. Bontoux, H.A. Stone, Formation of dispersions using “flow focusing” in microchannels, Applied physics letters, 82(3) (2003) 364-366.
[9] A.M. Gañán-Calvo, Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams, Physical review letters, 80(2) (1998) 285.
[10] M.A. Herrada, A.M. Gañán-Calvo, Swirl flow focusing: A novel procedure for the massive production of monodisperse microbubbles, Physics of Fluids, 21(4) (2009) 042003.
[11] H. Kim, D. Luo, D. Link, D.A. Weitz, M. Marquez, Z. Cheng, Controlled production of emulsion drops using an electric field in a flow-focusing microfluidic device, Applied Physics Letters, 91(13) (2007) 133106.
[12] F. Malloggi, H. Gu, A. Banpurkar, S. Vanapalli, F. Mugele, Electrowetting--A versatile tool for controlling microdrop generation, The European Physical Journal E, 26(1) (2008) 91-96.
[13] N.-T. Nguyen, T.-H. Ting, Y.-F. Yap, T.-N. Wong, J.C.-K. Chai, W.-L. Ong, J. Zhou, S.-H. Tan, L. Yobas, Thermally mediated droplet formation in microchannels, Applied Physics Letters, 91(8) (2007) 084102.
[14] S.-Y. Park, T.-H. Wu, Y. Chen, M.A. Teitell, P.-Y. Chiou, High-speed droplet generation on demand driven by pulse laser-induced cavitation, Lab on a Chip, 11(6) (2011) 1010-1012.
[15] H. Willaime, V. Barbier, L. Kloul, S. Maine, P. Tabeling, Arnold tongues in a microfluidic drop emitter, Physical review letters, 96(5) (2006) 054501.
[16] A. Bransky, N. Korin, M. Khoury, S. Levenberg, A microfluidic droplet generator based on a piezoelectric actuator, Lab on a Chip, 9(4) (2009) 516-520.
[17] N. Pamme, Magnetism and microfluidics, Lab on a Chip, 6(1) (2006) 24-38.
[18] J. Rife, M. Miller, P. Sheehan, C. Tamanaha, M. Tondra, L. Whitman, Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors, Sensors and Actuators A: Physical, 107(3) (2003) 209-218.
[19] C. Elbuken, T. Glawdel, D. Chan, C.L. Ren, Detection of microdroplet size and speed using capacitive sensors, Sensors and Actuators A: Physical, 171(2) (2011) 55-62.
[20] H. Kim, D. Cheon, J. Lim, K. Nam, Robust Flow Control of a Syringe Pump Based on Dual-Loop Disturbance Observers, IEEE Access, 7 (2019) 135427-135438.
[21] S. Motaghi, M. Nazari, M. Nazari, N. Sepehri, A. Mahdavi, Control of Droplet Size in a Two-Phase Microchannel using PID Controller: A Novel Experimental Study, Amirkabir Journal of Mechanical Engineering, 53 (7) (2021) 1-10.
[22] H. Fu, W. Zeng, S. Li, S. Yuan, Electrical-detection droplet microfluidic closed-loop control system for precise droplet production, Sensors and Actuators A: Physical, 267 (2017) 142-149.
[23] J.B. Christen, A.G. Andreou, Design, fabrication, and testing of a hybrid CMOS/PDMS microsystem for cell culture and incubation, IEEE Transactions on Biomedical Circuits and Systems, 1(1) (2007) 3-18.
[24] E. Miller, M. Rotea, J.P. Rothstein, Microfluidic device incorporating closed loop feedback control for uniform and tunable production of micro-droplets, Lab on a Chip, 10(10) (2010) 1293-1301.
[25] Y.J. Heo, J. Kang, W.K. Chung, Robust control for valveless flow switching in microfluidic networks, in: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2015, pp. 1982-1987.
[26] Y.J. Heo, J. Kang, M.J. Kim, W.K. Chung, Tuning-free controller to accurately regulate flow rates in a microfluidic network, Scientific reports, 6(1) (2016) 1-12.
[27] Y. Kim, B. Kuczenski, P.R. LeDuc, W.C. Messner, Modulation of fluidic resistance and capacitance for long-term, high-speed feedback control of a microfluidic interface, Lab on a Chip, 9(17) (2009) 2603-2609.
[28] D. Huang, K. Wang, Y. Wang, H. Sun, X. Liang, T. Meng, Precise control for the size of droplet in T-junction microfluidic based on iterative learning method, Journal of the Franklin Institute, 357(9) (2020) 5302-5316.
[29] Y. Tang, Y. Chen, K. Wang, Y. Miao, A micro-vibrator based cross-junction microfluidic system for formation and control of droplets, in: Journal of Physics: Conference Series, IOP Publishing, 2021, pp. 012006.
[30] Y. Xie, A.J. Dixon, J.R. Rickel, A.L. Klibanov, J.A. Hossack, Closed-loop feedback control of microbubble diameter from a flow-focusing microfluidic device, Biomicrofluidics, 14(3) (2020) 034101.
[31] L. Li, Z. Gu, J.-L. Zhou, B. Yan, C. Kong, H. Wang, H.-F. Wang, Intelligent droplet tracking with correlation filters for digital microfluidics, Chinese Chemical Letters, 32(11) (2021) 3416-3420.
[32] Z. Luo, B. Huang, J. Xu, L. Wang, Z. Huang, L. Cao, S. Liu, Machine vision-based driving and feedback scheme for digital microfluidics system, Open Chemistry, 19(1) (2021) 665-677.
[33] A.M. Ibrahim, J.I. Padovani, R.T. Howe, Y.H. Anis, Modeling of Droplet Generation in a Microfluidic Flow-Focusing Junction for Droplet Size Control, Micromachines, 12(6) (2021) 590.
[34] N. Shi, M. Mohibullah, C.J. Easley, Active Flow Control and Dynamic Analysis in Droplet Microfluidics, Annual Review of Analytical Chemistry, 14 (2021) 133-153.
[35] J. Friend, L. Yeo, Fabrication of microfluidic devices using polydimethylsiloxane, Biomicrofluidics, 4(2) (2010) 026502.
[36] P. Renaud, H. Van Lintel, M. Heuschkel, L. Guerin, Photo-polymer microchannel technologies and applications, Micro Total Analysis Systems’98, (1998) 17-22.
[37] T. Kong, J. Wu, M. To, K. Wai Kwok Yeung, H. Cheung Shum, L. Wang, Droplet based microfluidic fabrication of designer microparticles for encapsulation applications, Biomicrofluidics, 6 (2012).
[38] A.S. Basu, Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters, Lab on a Chip, 13(10) (2013) 1892-1901.
[39] S. Mottaghi, M. Nazari, S.M. Fattahi, M. Nazari, S. Babamohammadi, Droplet size prediction in a microfluidic flow focusing device using an adaptive network based fuzzy inference system, Biomedical Microdevices, 22(3) (2020) 1-12.
[40] J.-J.E. Slotine, W. Li, Applied nonlinear control, Prentice hall Englewood Cliffs, NJ, 1991.