[1] J. Bian, X. Cao, W. Yang, D. Guo, C. Xiang, Prediction of supersonic condensation process of methane gas considering real gas effects, Applied Thermal Engineering, 164 (2020) 114508.
[2] D.C. de Melo, L.d.O. Arinelli, J.L. de Medeiros, A.M. Teixeira, G.V. Brigagão, F.M. Passarelli, W.M. Grava, O. de QF Araujo, Supersonic separator for cleaner offshore processing of supercritical fluid with ultra-high carbon dioxide content: Economic and environmental evaluation, Journal of Cleaner Production, 234 (2019) 1385-1398.
[3] A. Esmaeili, Supersonic separation of natural gas liquids by Twister technology, Chemical engineering transactions, 52 (2016) 7-12.
[4] S. Dykas, M. Majkut, M. Strozik, K. Smołka, Experimental study of condensing steam flow in nozzles and linear blade cascade, International Journal of Heat and Mass Transfer, 80 (2015) 50-57.
[5] H. Ding, C. Wang, Y. Zhao, An analytical method for Wilson point in nozzle flow with homogeneous nucleating, International journal of heat and mass transfer, 73 (2014) 586-594.
[6] C. Moses, G. Stein, On the growth of steam droplets formed in a Laval nozzle using both static pressure and light scattering measurements, J. Fluids Eng, 100(3) (1978) 311-322.
[7] P.G. Hill, Condensation of water vapour during supersonic expansion in nozzles, Journal of Fluid Mechanics, 25(3) (1966) 593-620.
[8] S.N.R. Abadi, R. Kouhikamali, K. Atashkari, Two-fluid model for simulation of supersonic flow of wet steam within high-pressure nozzles, International Journal of Thermal Sciences, 96 (2015) 173-182.
[9] B. Nikkhahi, M. Shams, M. Ziabasharhagh, A numerical study of two-phase transonic steam flow through convergence-divergence nozzles with different rates of expansion, Korean Journal of Chemical Engineering, 27(6) (2010) 1646-1653.
[10] A. Zhao, S. Guo, X. Qi, S. Gao, J. Sun, Numerical study on the nano-droplets formation process from superheated steam condensation flow effected by nozzle convergent profile, International Communications in Heat and Mass Transfer, 104 (2019) 109-117.
[11] A. Pillai, B. Prasad, Effect of wall surface roughness on condensation shock, International Journal of Thermal Sciences, 132 (2018) 435-445.
[12] X. Cao, J. Bian, Supersonic separation technology for natural gas processing: A review, Chemical Engineering and Processing-Process Intensification, 136 (2019) 138-151.
[13] Q.-F. Ma, D.-P. Hu, J.-Z. Jiang, Z.-H. Qiu, A turbulent Eulerian multi-fluid model for homogeneous nucleation of water vapour in transonic flow, International Journal of Computational Fluid Dynamics, 23(3) (2009) 221-231.
[14] Q.-F. Ma, D.-P. Hu, J.-Z. Jiang, Z.-H. Qiu, Numerical study of the spontaneous nucleation of self-rotational moist gas in a converging-diverging nozzle, International Journal of Computational Fluid Dynamics, 24(1-2) (2010) 29-36.
[15] S.H.R. Shooshtari, A. Shahsavand, Predictions of wet natural gases condensation rates via multi-component and multi-phase simulation of supersonic separators, Korean Journal of Chemical Engineering, 31(10) (2014) 1845-1858.
[16] S.R. Shooshtari, A. Shahsavand, Reliable prediction of condensation rates for purification of natural gas via supersonic separators, Separation and Purification Technology, 116 (2013) 458-470.
[17] S.R. Shooshtari, A. Shahsavand, Optimal operation of refrigeration oriented supersonic separators for natural gas dehydration via heterogeneous condensation, Applied Thermal Engineering, 139 (2018) 76-86.
[18] M. Vatanmakan, E. Lakzian, M.R. Mahpeykar, Investigating the entropy generation in condensing steam flow in turbine blades with volumetric heating, Energy, 147 (2018) 701-714.
[19] S. Dykas, W. Wróblewski, Numerical modeling of steam condensing flow in low and high-pressure nozzles, International Journal of Heat and Mass Transfer, 55(21-22) (2012) 6191-6199.
[20] A. White, M. Hounslow, Modelling droplet size distributions in polydispersed wet-steam flows, International Journal of Heat and Mass Transfer, 43(11) (2000) 1873-1884.
[21] E. Jabir, B. Dmitrii, A. Konstantin, H.D. Kim, Numerical estimation of non-equilibrium condensation of steam in supersonic nozzles, Journal of Mechanical Science and Technology, 32(10) (2018) 4649-4655.
[22] L. Prandtl, General considerations on the flow of compressible fluids, No. NACA-TM-805, (1936).
[23] K. MATSUO, S. KAWAGOE, K. SONODA, K. SAKAO, Studies of condensation shock waves: part 1, mechanism of their formation, Bulletin of JSME, 28(241) (1985) 1416-1422.
[24] T. Setoguchi, S. Matsuo, S. Yu, H. Hirahara, Effect of nonequilibrium homogenous condensation on flow fields in a supersonic nozzle, Journal of Thermal Science, 6(2) (1997) 90-96.
[25] D. Majidi, F. Farhadi, Supersonic separator’s dehumidification performance with specific structure: Experimental and numerical investigation, Applied Thermal Engineering, 179 (2020) 115551.
[26] S.R. Shooshtari, A. Shahsavand, Maximization of energy recovery inside supersonic separator in the presence of condensation and normal shock wave, Energy, 120 (2017) 153-163.
[27] A. White, J. Young, Time-marching method for the prediction of two-dimensional, unsteadyflows of condensing steam, Journal of Propulsion and Power, 9(4) (1993) 579-587.
[28] A. Gerber, Two-phase Eulerian/Lagrangian model for nucleating steam flow, J. Fluids Eng., 124(2) (2002) 465-475.
[29] Fluent, Ansys. 21.1 Theory Guide, Ansys Inc, (2021).
[30] K. Ishizaka, A high-resolution numerical method for transonic non-equilibrium condensation flow through a steam turbine cascade, Proc. of the 6th ISCFD, 1 (1995) 479-484.
[31] S.L. Girshick, C.P. Chiu, Kinetic nucleation theory: A new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor, The journal of chemical physics, 93(2) (1990) 1273-1277.
[32] S.L. Girshick, Comment on: ‘‘Self‐consistency correction to homogeneous nucleation theory’’, The Journal of chemical physics, 94(1) (1991) 826-827.
[33] M.M. Rudek, J.A. Fisk, V.M. Chakarov, J.L. Katz, Condensation of a supersaturated vapor. XII. The homogeneous nucleation of the n‐alkanes, The Journal of chemical physics, 105(11) (1996) 4707-4713.
[34] C.C.M. Luijten, Nucleation and droplet growth at high pressure, Eindhoven: Technische Universiteit Eindhoven, (1998).
[35] G. Lamanna, On nucleation and droplet growth in condensation nozzle flows, Eindhoven: Eindhoven University of Technology, (2000).
[36] J. Young, Spontaneous condensation of steam in supersonic nozzles, Physicochemical Hydrodynamics (PCH), 3 (1982) 57-82.
[37] G. Gyarmathy, The spherical droplet in gaseous carrier streams: review and synthesis, Multiphase science and technology, 1(1-4) (1982).
[38] J. Young, Two-dimensional, nonequilibrium, wet-steam calculations for nozzles and turbine cascades, J. Turbomach, 114(3) (1992) 569-579.
[39] G.H. Schnerr, U. Dohrmann, Transonic flow around airfoils with relaxation and energy supply by homogeneous condensation, AIAA Journal, 28(7) (1990) 1187-1193.
[40] A. Bejan, A study of entropy generation in fundamental convective heat transfer, J. Heat Transfer, 101(4) (1979) 718-725.
[41] S. Paoletti, F. Rispoli, E. Sciubba, Calculation of exergetic losses in compact heat exchanger passages, in: Asme Aes, (1989) 21-29.
[42] P. Benedetti, E. Sciubba, Numerical calculation of the local rate of entropy generation in the flow around a heated finned-tube, ASME, NEW YORK, NY, (USA). 30 (1993) 81-91.
[43] J. Young, An equation of state for steam for turbomachinery and other flow calculations, Trans ASME J. Eng. Gas Turbines Power, 110(1) (1988) 1-7.
[44] X. Cao, W. Yang, Numerical simulation of binary-gas condensation characteristics in supersonic nozzles, Journal of Natural Gas Science and Engineering, 25 (2015) 197-206.
[45] S. Senguttuvan, J.-C. Lee, Numerical study of wet-steam flow in Moore nozzles, Journal of Mechanical Science and Technology, 33(10) (2019) 4823-4830.
[46] C. Wen, X. Cao, Y. Yang, Y. Feng, Prediction of mass flow rate in supersonic natural gas processing, Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 70(6) (2015) 1101-1109.
[47] C. Wen, X. Cao, Y. Yang, W. Li, An unconventional supersonic liquefied technology for natural gas, Energy Education Science and Technology Part A: Energy Science and Research, 30(1) (2012) 651-660.
[48] Y. Yang, C. Wen, S. Wang, Y. Feng, Numerical simulation of real gas flows in natural gas supersonic separation processing, Journal of Natural Gas Science and Engineering, 21 (2014) 829-836.
[49] F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal, 32(8) (1994) 1598-1605.
[50] A.J. Hedbäck, Theorie der spontanen Kondensation in Düsen und Turbinen, ETH Zurich, (1982).