کنترل بهینه لیزر در درمان حرارتی سرطان

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده فنی مهندسی گلپایگان، دانشگاه صنعتی اصفهان، ایران

چکیده

درمان حرارتی یکی از روش‌های درمان سرطان است که عملکرد آن به کنترل دقیق توزیع دما درون بافت آسیب دیده بستگی دارد. در روش درمان حرارتی، افزایش دما در بافت سالم مجاور بافت آسیب دیده می‌تواند عوارض ناگواری داشته باشد. در این مقاله، کنترل بهینه لیزر به منظور درمان حرارتی سرطان با به حداقل رساندن آسیب حرارتی انجام می‌شود. با توجه به رفتار غیرفوریه‌ای انتقال حرارت در درمان تحت لیزر، توزیع دمای گذرای وابسته به زمان در حالت یک بعدی، به همراه گرمای متابولیسم و پرفیوژن خون با استفاده از معادله انتقال حرارت پنز بررسی می‌گردد. سپس برای به حداقل رساندن آسیب‌ حرارتی درون بافت سالم مجاور بافت آسیب دیده، تابع هدفی شامل اختلاف آسیب حرارتی محاسبه شده با آسیب حرارتی مطلوب درنظر گرفته می‌شود. برای حل مسئله کنترل بهینه، از روش گرادیان مزدوج استفاده شده است. شرایط مرزی بافت مورد نظر در سطح پوست به صورت همرفت و در عمق بافت به صورت دما ثابت و برابر دمای خون در نظر گرفته شده است. نتایج حاصل از حل مسئله کنترل بهینه نشان می‌دهد که آسیب حرارتی با در نظر گرفتن شار حرارتی مثلثی با خطای 2% و با شار حرارتی پله‌ای با خطای 5% منطبق با آسیب حرارتی مطلوب است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimal laser control for cancer thermal therapy

نویسندگان [English]

  • Sajjad Samadi
  • Mostafa Nasiri
  • Marzieh Rezazadeh
Mechanical Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology
چکیده [English]

Todays, various treatments such as surgery, chemotherapy, radiotherapy, and hyperthermia are used to treat cancer. The best treatment for cancer is to accurately control the distribution of temperature in the damaged tissue, which has been the subject of many studies in recent years. Due to the increased temperature in cancer treatment, and especially in hyperthermia, the healthy tissue adjacent to the damaged tissue also disappears and results in bad consequences. In this paper, the optimal laser control for cancer therapy has been done. According to the non-Fourier behavior of temperature transitions in laser treatments, the time-dependent transient temperature distribution in one-dimensional mode, along with the heat of metabolism and perfusion of blood, using the Pence heat transfer equation, is analyzed. In order to minimize the damage to the healthy tissues adjacent to the damaged tissue, the objective function includes the difference between the calculated thermal damage with the desired thermal damage is defined. Therefore, the thermal flux value is optimized as an optimal control problem, and the lowest and most useful value is obtained. Finally, the results of the numerical solution to this problem are extracted and shown for triangular thermal flux and square heat pulses.

کلیدواژه‌ها [English]

  • Optimal control
  • Hyperthermia
  • Tumor
  • Thermal damage
  • Conjugate gradient
[1] K.-S. Cheng, R. Roemer, Optimal power deposition patterns for ideal high temperature therapy/hyperthermia treatments, International journal of hyperthermia, 20(1) (2004) 57-72.
[2] M. Akamatsu, Z. Guo, Ultrafast Laser Pulse Train Radiation Transfer in a Scattering-Absorbing 3D Medium with an Inhomogeneity, Heat Transfer Research, 46(9)(2015)
[3] S. Kumar, A. Srivastava, Numerical investigation of the influence of pulsatile blood flow on temperature distribution within the body of laser-irradiated biological tissue phantoms, International Journal of Heat and Mass Transfer, 95 (2016) 662-677.
[4] G. Abbasi, A. Malek, Pointwise optimal control for cancer treatment by hyperthermia with thermal wave bioheat transfer, Automatica, 111 (2020) 108579.
[5] K.-C. Liu, P.-J. Cheng, Y.-N. Wang, Analysis of non-Fourier thermal behavior for multi-layer skin model, Thermal Science, 15(suppl. 1) (2011) 61-67.
[6] H. Wang, W. Dai, A. Bejan, Optimal temperature distribution in a 3D triple-layered skin structure embedded with artery and vein vasculature and induced by electromagnetic radiation, International Journal of Heat and Mass Transfer, 50(9-10) (2007) 1843-1854.
[7] S. Rhein, C. Oesterle, K. Graichen, Optimal trajectory planning for interstitial hyperthermia processes, IFAC-PapersOnLine, 49(8) (2016) 136-141.
[8] H. Askarizadeh, H. Ahmadikia, Analytical analysis of the dual-phase-lag model of bioheat transfer equation during transient heating of skin tissue, Heat and Mass Transfer, 50(12) (2014) 1673-1684.
[9] J. Lin, Y. Zhang, S. Reutskiy, A semi-analytical method for 1D, 2D and 3D time fractional second order dual-phase-lag model of the heat transfer, Alexandria Engineering Journal, 60(6) (2021) 5879-5896.
[10] N. Sharma, S. Singh, D. Kumar, Numerical solution of nonlinear dual‐phase‐lag model for analyzing heat transfer in tissue during thermal therapy, Computational and Mathematical Methods, 3(6) (2021) e1183.
[11] P.K. DHAR, D. Sinha, Temperature control of tissue by transient-induced-microwaves, International journal of systems science, 19(10) (1988) 2051-2055.
[12] A. Malek, G. Abbasi, Optimal control for Pennes' bioheat equation, Asian Journal of Control, 18(2) (2016) 674-685.
[13] E. Majchrzak, M. Stryczyński, Dual-phase lag model of heat transfer between blood vessel and biological tissue, Mathematical Biosciences and Engineering, 18(2) (2021) 1573-1589.
[14] P. Dhar, R. Dhar, R. Dhar, Analytical study on optimal distribution of heating power in hyperthermia, International communications in heat and mass transfer, 39(3) (2012) 419-423.
[15] A. Kuznetsov, Optimization problems for bioheat equation, International Communications in Heat and Mass Transfer, 33(5) (2006) 537-543.
[16] H.-L. Lee, T.-H. Lai, W.-L. Chen, Y.-C. Yang, An inverse hyperbolic heat conduction problem in estimating surface heat flux of a living skin tissue, Applied Mathematical Modelling, 37(5) (2013) 2630-2643.
[17] M.C. Calzada, E. Fernández-Cara, M. Marín, Optimal control oriented to therapy for a free-boundary tumor growth model, Journal of theoretical biology, 325 (2013) 1-11.
[18] T. Loulou, E.P. Scott, Thermal dose optimization in hyperthermia treatments by using the conjugate gradient method, Numerical Heat Transfer: Part A: Applications, 42(7) (2002) 661-683.
[19] M. Knudsen, L. Heinzl, Two-point control of temperature profile in tissue, International journal of hyperthermia, 2(1) (1986) 21-38.
[20] K.-S. Cheng, V. Stakhursky, O.I. Craciunescu, P. Stauffer, M. Dewhirst, S.K. Das, Fast temperature optimization of multi-source hyperthermia applicators with reduced-order modeling of ‘virtual sources’, Physics in Medicine & Biology, 53(6) (2008) 1619.
[21] C. Rappaport, F. Morgenthaler, Optimal source distribution for hyperthermia at the center of a sphere of muscle tissue, IEEE transactions on microwave theory and techniques, 35(12) (1987) 1322-1327.
[22] F.S. Lobato, V.S. Machado, V. Steffen Jr, Determination of an optimal control strategy for drug administration in tumor treatment using multi-objective optimization differential evolution, Computer methods and programs in biomedicine, 131 (2016) 51-61.
[23] A.E. Kovtanyuk, A.Y. Chebotarev, N.D. Botkin, K.-H. Hoffmann, Optimal boundary control of a steady-state heat transfer model accounting for radiative effects, Journal of Mathematical Analysis and Applications, 439(2) (2016) 678-689.
[24] K.-C. Liu, T.-M. Chen, Comparative study of heat transfer and thermal damage assessment models for hyperthermia treatment, Journal of Thermal Biology, 98 (2021) 102907.
[25] R. Roohi, M. Heydari, Z. Avazzadeh, Optimal control of hyperthermia thermal damage based on tumor configuration, Results in Physics, 23 (2021) 103992.
[26] X. Liu, M. Almekkawy, An optimized control approach for hifu tissue ablation using pde constrained optimization method, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 68(5) (2020) 1555-1568.
[27] Y.Z. Wang, M.J. Li, D. Liu, Analytical analysis of the dual-phase-lag model of bio-heat transfer with pulse boundary heat flux on skin tissue, Waves in Random and Complex Media,  (2020) 1-14.
[28] G. Abbasi, A. Malek, Pointwise optimal control for cancer treatment by hyperthermia with thermal wave bioheat transfer, Automatica, 111 (2020) 108579.