پاسخ تحلیلی ارتعاش آزاد غیرخطی نانو ورق مستطیلی با شرایط مرزی مختلف با استفاده از تئوری غیرمحلی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوى دکترا، مهندسى مکانیک، دانشگاه یاسوج

2 استادیار ، مهندسى مکانیک، دانشگاه یاسوج

چکیده

در این مقاله، با استفاده از تئوری الاستیسیته غیرمحلی اثر مقیاس کوچک بر روی ارتعاش آزاد غیرخطی نانو ورق نازک همگن مورد بررسی قرار گرفته است. فرمول بندی براساس تئوری ورق کلاسیک (مدل کیرشهف) انجام گرفته و مدل غیرخطی فون کارمن در روابط جابجایی کرنشی استفاده شده است. جهت در نظر گرفتن مقیاس کوچک و اثر غیر خطی هندسی، معادلات دیفرانسیل حاکم بر اساس تئوری الاستیسیته غیرمحلی به همراه مدل هندسی فون کارمن استخراج و از اثر اینرسی چرخشی و تنش برشی چشم پوشی شده است. با وجود مرتبه سه غیرخطی، معادله دافینگ به کمک انتگرال بیضوی جهت محاسبه فرکانسهای طبیعی حل گردیده است. همچنین بعضی پاسخهای تحلیلی جابجایی عمودی به کمک توابع بیضوی ژاکوبی ارائه شده است. راندمان و دقت روش با مقایسه نتایج بدست آمده با مقالات در دسترس مورد بررسی قرار گرفته است. اثرات پارامترهای مختلف بر روی ارتعاشات غیرخطی نانو ورق استخراج شده و همچنین احتمال وقوع پدیده تشدید داخلی در نانو ورق مستطیلی مورد بررسی قرار گرفته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analytical Solution of Non-Linear Free Vibration of Thin Rectangular Plates with Various Boundary Conditions Based On Non-Local Theory

نویسندگان [English]

  • GholamAli Varzandian 1
  • Sima Ziaei 2
چکیده [English]

This article deals with the small-scale effect on the nonlinear free vibration of isotropic thin nano-plate using the nonlocal elasticity plate theory. The formulations are based on the Kirchhoff's plate theory, and von Karman-type nonlinearity is considered in strain displacement relations. To include the small scale and the geometrical nonlinearity effects, the governing differential equations are derived based on the nonlocal elasticity theory in conjunction with the von Karman geometrical model in which the effects of rotary inertia and transverse shear are neglected. With cubic non-linearities, Duffing's equation is solved by elliptic integral and natural frequencies are obtained. Also by means of Jacobi elliptic functions, some analytical solutions for deflection of plate are presented. The efficiency and accuracy of the method are demonstrated by comparing the developed result with those available in literature. The effects of various parameters on the nonlinear vibrations of nanoplates are presented. Occurrence probability of internal resonance in rectangular nanoplate is investigated.

کلیدواژه‌ها [English]

  • Nonlinear Free Vibration
  • Nonlocal Plate Theory
  • Elliptic Integral
  • Jacobi Elliptic Function
  • Internal Resonance
[1] Popov V. N., 2004. “Carbon nanotubes: properties and application”, Materials Science and ngineering Research, 43, pp. 61-102
[2] Rafii-Tabar H., 2004. “Computational modelling of thermo-mechanical and transport properties of carbon nanotubes”, Physics Reports, 390, pp. 235-452.
[3] Eringen, A.C., 1983. “On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves”, Journal of Applied Physics., 54,pp. 4703–4710.
[4] Eringen, A.C., 2002. “Nonlocal Continuum Field Theories”, Springer, New York.
[5] Koiter, W. T., 1964. “Couple Stresses in the Theory of Elasticity”, Royal Netherlands Academy of Sciences,Series B, LXVII,.1 No. 67, pp. 17–44.
[6] Mindlin, R.D., Eshel, N.N., 1968. “On first straingradient theories in linear elasticity”, Int. J. Solids Struct. 4, pp. 109–124.
[7] Yang F, Chong ACM, Lam DCC, Tong P., 2002.“Couple stress based strain gradient theory for elasticity”, Int J Solids Struct., 39, pp. 2731–43.
[8] Reddy J.N., Kim J., 2012. “A nonlinear modified couple stress-based third-order theory of functionally graded plates”, Composite Structures, 94, pp.1128-1143.
[9] Pradhan SC, Phadikar JK., 2009. “Nonlocal elasticity theory for vibration of nanoplates”, J. Sound Vib., 325,pp. 206–23.
[10] Alibeigloo A., 2011. “Free vibration analysis of nanoplate using three-dimensional theory of elasticity”,Acta Mech, 222, pp. 149–159.
[11] Setoodeh AR, Malekzadeh P, Vosoughi AR., 2011.“Nonlinear free vibration of orthotropic graphene sheets using nonlocal mindlin plate theory”, Proc Inst Mech Eng, Part C: J Mech Eng Sci, 226, No.7, pp.1896-1906.
[12] K.F. Wang, B.L. Wang, 2013. “Effect of surface energy on the non-linear postbuckling behavior of nanoplates”, International Journal of Non-Linear Mechanics, 55, pp19-24.
[13] Pouya Asgharifard Sharabiani, Mohammad Reza Haeri Yazdi, 2013. “Nonlinear free vibrations of functionally graded nanobeams with surface effects”,Composites: Part B, 45, pp.581-586.
[14] Rajarshi Maitra, Supratik Bose, 2012. “Post Buckling Behaviour of a Nanobeam considering both the  surface and nonlocal effects”, International Journal of Advancements in Research & Technology, 1, pp.1-5.
[15] Ali Farajpour, Alireza ArabSolghar, Alireza Shahidi, 2013. “Postbuckling analysis of multilayered graphene sheets under non-uniform biaxial compression”, Physica E, 47, pp.197-206.
[16] W. Lestari, S. Hanagud, 2001. “Nonlinear vibration of buckled beams: some exact solutions”,International Journal of Solids and Structures, 38, pp.4741—4757.
[17] Hamed Farokhi, Mergen H. Ghayesh, Marco Amabili,2013. “Nonlinear resonant behavior of microbeams over the buckled state”, Appl. Phys. A, 113, pp.297-307.
[18] Ventsel E., Krauthammer T., 2001. “Thin Plates and Shells: Theory, Analysis and Applications”, Marcell Dekker Inc.
[19] Robert M. Jones, 1999. “Mechanics of Composite Materials: 2nd Edition”, Taylor & Francis, Inc.
[20] Reddy J. N., 2007. “Theory and Analysis of Elastic plates and Shels: 2nd Edition”, Taylor & Francis Group.
[21] Kelly S.G., 2012. “Mechanical Vibrations: Theory and Applications SI.”, Cengage Learning.
[22] Byrd PF, Friedman MD., 1991. “Handbook of elliptic integrals for engineers and scientists”, Berlin:Springer.
[23] Abramowitz M, Stegun I., 1965. “Handbook of Mathematical Functions, Chapter 17.”, Dover Publications Inc.: New York.
[24] Ansari R., Rajabiehfard R., Arash B., 2010. “Nonlocal finite element model for vibrations of embedded multilayered graphene sheets”, Comput. Mater. Sci., 49,pp.831–838.
[25] Nayfeh A.H., Mook D.T., 1995. “Nonlinear oscillations”, New York: Wiley.
[26] Lau, S. L., Cheung, Y. K., and Wu, S. Y., 1984.“Internal Resonance by Amplitude Incremental Finite Element”, ASME JOURNAL OF APPLIED MECHANICS, 51, pp. 845-851.
[27] S. Sridhar, D. T. Mookand A. H. Nayfeh., 1975.“NON.LINEAR RESONANCES IN THE FORCED RESPONSES OF PLATES, PART I: SYMMETRIC RESPONSES OF CIRCULAR PLATES”, Journal of Sound and Vibration, 41, pp.359-373.
[28] D. W. Lobitz, A. H. Nayfeh and D. T. Mook, 1977.“NON-LINEAR ANALYSIS OF VIBRATIONS OF IRREGULAR PLATES”, Journal of Sound and Vibration, 50, pp.203-217.
[29] P. Ribeiro, M. Petyt, 1999. “Non-linear vibration of beams with internal resonance by the hierarchical finite-element method”, Journal of Sound and Vibration, 224, pp.591-624.