[1] Z. Bai, P.M. Dewilde, R.W. Freund, Reduced-order modeling, Handbook of numerical analysis, 13 (2005) 825-895.
[2] K.H. Park, S.O. Jun, S.M. Baek, M.H. Cho, K.J. Yee, D.H. Lee, Reduced-order model with an artificial neural network for aerostructural design optimization, Journal of Aircraft, 50(4) (2013) 1106-1116.
[3] S.A. Nahvi, M.A. Bazaz, H. Khan, Model order reduction in power electronics: Issues and perspectives, in: 2017 International Conference on Computing, Communication and Automation (ICCCA), IEEE, 2017, pp. 1417-1421.
[4] M.A. Cardoso, L.J. Durlofsky, P. Sarma, Development and application of reduced‐order modeling procedures for subsurface flow simulation, International journal for numerical methods in engineering, 77(9) (2009) 1322-1350.
[5] D.B. Segala, D. Chelidze, Robust and dynamically consistent model order reduction for nonlinear dynamic systems, Journal of Dynamic Systems, Measurement, and Control, 137(2) (2015) 021011.
[6] K.T. Carlberg, Model reduction of nonlinear mechanical systems via optimal projection and tensor approximation, Stanford University, 2011.
[7] M.F.A. Azeez, A.F. Vakakis, Numerical and experimental analysis of a continuous overhung rotor undergoing vibro-impacts, International journal of non-linear mechanics, 34(3) (1999) 415-435.
[8] R. Kappagantu, B. Feeny, An" optimal" modal reduction of a system with frictional excitation, Journal of Sound and vibration, 224(5) (1999) 863-877.
[9] Y. Liang, W. Lin, H. Lee, S. Lim, K. Lee, H. Sun, Proper orthogonal decomposition and its applications–part II: Model reduction for MEMS dynamical analysis, Journal of Sound and Vibration, 256(3) (2002) 515-532.
[10] X. Ma, A.F. Vakakis, L.A. Bergman, Karhunen-Loeve modes of a truss: transient response reconstruction and experimental verification, AIAA journal, 39(4) (2001) 687-696.
[11] X. Ma, A.F. Vakakis, Karhunen-Lo-ccedil; ve Decomposition of the Transient Dynamics of a Multibay Truss, AIAA journal, 37(8) (1999) 939-946.
[12] A. Steindl, H. Troger, Methods for dimension reduction and their application in nonlinear dynamics, International Journal of Solids and Structures, 38(10-13) (2001) 2131-2147.
[13] M.I. Friswell, D.J. Inman, Sensor validation for smart structures, Journal of intelligent material systems and structures, 10(12) (1999) 973-982.
[14] G. Kerschen, P. De Boe, J.-C. Golinval, K. Worden, Sensor validation using principal component analysis, Smart materials and structures, 14(1) (2004) 36.
[15] B. Feeny, On proper orthogonal co-ordinates as indicators of modal activity, Journal of Sound and Vibration, 255(5) (2002) 805-817.
[16] S. Han, B. Feeny, Application of proper orthogonal decomposition to structural vibration analysis, Mechanical Systems and Signal Processing, 17(5) (2003) 989-1001.
[17] K. Fukunaga, Introduction to statistical pattern recognition, Elsevier, 2013.
[18] D. Xiao, F. Fang, J. Du, C. Pain, I. Navon, A. Buchan, A.H. Elsheikh, G. Hu, Non-linear Petrov–Galerkin methods for reduced order modelling of the Navier–Stokes equations using a mixed finite element pair, Computer Methods In Applied Mechanics and Engineering, 255 (2013) 147-157.
[19] D. Xiao, F. Fang, C. Pain, G. Hu, Non‐intrusive reduced‐order modelling of the Navier–Stokes equations based on RBF interpolation, International Journal for Numerical Methods in Fluids, 79(11) (2015) 580-595.
[20] F. Fang, T. Zhang, D. Pavlidis, C. Pain, A. Buchan, I. Navon, Reduced order modelling of an unstructured mesh air pollution model and application in 2D/3D urban street canyons, Atmospheric Environment, 96 (2014) 96-106.
[21] M. Diez, E.F. Campana, F. Stern, Design-space dimensionality reduction in shape optimization by Karhunen–Loève expansion, Computer Methods in Applied Mechanics and Engineering, 283 (2015) 1525-1544.
[22] A. Manzoni, F. Salmoiraghi, L. Heltai, Reduced Basis Isogeometric Methods (RB-IGA) for the real-time simulation of potential flows about parametrized NACA airfoils, Computer Methods in Applied Mechanics and Engineering, 284 (2015) 1147-1180.
[23] X. Chen, S. Akella, I. Navon, A dual‐weighted trust‐region adaptive POD 4‐D Var applied to a finite‐volume shallow water equations model on the sphere, International Journal for Numerical Methods in Fluids, 68(3) (2012) 377-402.
[24] R. Ştefănescu, I.M. Navon, POD/DEIM nonlinear model order reduction of an ADI implicit shallow water equations model, Journal of Computational Physics, 237 (2013) 95-114.
[25] R. Ştefănescu, A. Sandu, I.M. Navon, Comparison of POD reduced order strategies for the nonlinear 2D shallow water equations, International Journal for Numerical Methods in Fluids, 76(8) (2014) 497-521.
[26] D.A. Bistrian, I.M. Navon, An improved algorithm for the shallow water equations model reduction: Dynamic Mode Decomposition vs POD, International Journal for Numerical Methods in Fluids, 78(9) (2015) 552-580.
[27] D. Xiao, C. Heaney, L. Mottet, F. Fang, W. Lin, I. Navon, Y. Guo, O. Matar, A. Robins, C. Pain, A reduced order model for turbulent flows in the urban environment using machine learning, Building and Environment, 148 (2019) 323-337.
[28] M. Moayyedi, Reconstruction of Gappy Unsteady Flow Fields using Improved Reduced Order POD Model based on Temporal Decomposition Procedure, Amirkabir Journal of Mechanical Engineering, 49(1) (2017) 101-112. (in persian)
[29] D. Kosambi, Statistics in function space, in: DD Kosambi, Springer, 2016, pp. 115-123.
[30] M. Loeve, Functions aleatoires du second ordre, Processus stochastique et mouvement Brownien, (1948) 366-420.
[31] K. Karhunen, Über lineare Methoden in der Wahrscheinlichkeitsrechnung: akademische Abhandlung, Sana, 1947.
[32] V.S. Pugachev, The general theory of correlation of random functions, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 17(5) (1953) 401-420.
[33] A. Obukhov, Statistical description of continuous fields, Transactions of the Geophysical International Academy Nauk USSR, 24(24) (1954) 3-42.
[34] S.M. Rahman, S.E. Ahmed, O. San, A dynamic closure modeling framework for model order reduction of geophysical flows, Physics of Fluids, 31(4) (2019) 046602.
[35] M. Moayyedi, M.T.R. , F.S. , Calibrated Reduced Order POD Model for Simulation of Unsteady Incompressible Flows, Fluid Mechanics & Aerodynamics Journal, 1(1) (2012))in persian).
[36] Y. Liang, H. Lee, S. Lim, W. Lin, K. Lee, C. Wu, Proper orthogonal decomposition and its applications—Part I: Theory, Journal of Sound and vibration, 252(3) (2002) 527-544.
[37] S. Ravindran, Proper orthogonal decomposition in optimal control of fluids, National Aeronautics and Space Administration, Langley Research Center, 1999.
[38] S.L. Brunton, B.R. Noack, P. Koumoutsakos, Machine learning for fluid mechanics, Annual Review of Fluid Mechanics, 52 (2020) 477-508.
[39] C. Olah, Understanding LSTM Networks, in, 2015.
[40] J. Cheng, L. Dong, M. Lapata, Long short-term memory-networks for machine reading, arXiv preprint arXiv:1601.06733, (2016).
[41] S.M. Rahman, Reduced Order Modeling of Geophysical Flows Using Physics-based and Data-driven Modeling Techniques, PhD diss, Oklahoma State University, 2019.
[42] H. Ahmad, Machine learning applications in oceanography, Aquatic Research, 2(3) (2019) 161-169.
[43] G. Batchelor, Turbulence, coherent structures, dynamical system, and symmetry, in, Cambridge, United Kingdom: Cambridge University Press, 2000.
[44] O. San, T. Iliescu, A stabilized proper orthogonal decomposition reduced-order model for large scale quasigeostrophic ocean circulation, Advances in Computational Mathematics, 41(5) (2015) 1289-1319.
[45] O. San, A.E. Staples, Z. Wang, T. Iliescu, Approximate deconvolution large eddy simulation of a barotropic ocean circulation model, Ocean Modelling, 40(2) (2011) 120-132.
[46] R.J. Hyndman, A.B. Koehler, Another look at measures of forecast accuracy, International journal of forecasting, 22(4) (2006) 679-688.