[1] G. Weinberger, Y. Yemane, Experimental and numerical study of entrainment phenomena in an impinging jet, the University of Gavle, Department of technology and the built environment, Master’s thesis in energy systems, 2010.
[2] J. Ferrari, N. Lior, J. Slycke, An evaluation of gas quenching of steel rings by multiple-jet impingement, Journal of materials processing technology, 136(1-3) (2003) 190-201.
[3] J.-C. Han, Recent studies in turbine blade cooling, International journal of rotating machinery, 10(6) (2004) 443-457.
[4] A. Pavlova, M. Amitay, Electronic cooling using synthetic jet impingement, International Journal of Heat Transfer, 128(9) (2006) 897-907.
[5] P.S. Penumadu, A.G. Rao, Numerical investigations of heat transfer and pressure drop characteristics in multiple jet impingement system, Applied Thermal Engineering, 110 (2017) 1511-1524.
[6] B. Weigand, S. Spring, Multiple jet impingement− a review, in: TURBINE-09. Proceedings of International Symposium on Heat Transfer in Gas Turbine Systems, Begel House Inc., 2009.
[7] A.M. Huber, R. Viskanta, Effect of jet-jet spacing on convective heat transfer to confined, impinging arrays of axisymmetric air jets, International Journal of Heat and Mass Transfer, 37(18) (1994) 2859-2869.
[8] J.-Y. San, M.-D. Lai, Optimum jet-to-jet spacing of heat transfer for staggered arrays of impinging air jets, International Journal of Heat and Mass Transfer, 44(21) (2001) 3997-4007.
[9] D. Kercher, W. Tabakoff, Heat transfer by a square array of round air jets impinging perpendicular to a flat surface including the effect of spent air, International Journal of Eng. Power, 92(1) (1970) 37-82.
[10] D. Metzger, L. Florschuetz, D. Takeuchi, R. Behee, R. Berry, Heat transfer characteristics for inline and staggered arrays of circular jets with crossflow of spent air, International Journal of Heat Transfer, 101(3) (1979) 526-531.
[11] L.W. Florschuetz, R. Berry, D. Metzger, Periodic streamwise variations of heat transfer coefficients for inline and staggered arrays of circular jets with crossflow of spent air, International Journal of Heat Transfer, 102(1) (1980) 132-137.
[12] Z.-X. Wen, Y.-L. He, X.-W. Cao, C. Yan, Numerical study of impinging jets heat transfer with different nozzle geometries and arrangements for a ground fast cooling simulation device, International Journal of Heat and Mass Transfer, 95 (2016) 321-335.
[13] S. Debnath, M.H.U. Khan, Z.U. Ahmed, Turbulent swirling impinging jet arrays: A numerical study on fluid flow and heat transfer, Thermal Science and Engineering Progress, 19 (2020) 100580.
[14] D. Qiu, C. Wang, L. Luo, S. Wang, Z. Zhao, Z. Wang, On heat transfer and flow characteristics of jets impinging onto a concave surface with varying jet arrangements, Journal of Thermal Analysis and Calorimetry, 141 (2020) 57-68.
[15] A.S. Rattner, General characterization of jet impingement array heat sinks with interspersed fluid extraction ports for uniform high-flux cooling, Journal of Heat Transfer, 139(8) (2017).
[16] Z. Chi, R. Kan, J. Ren, H. Jiang, Experimental and numerical study of the anti-crossflows impingement cooling structure, International Journal of Heat and Mass Transfer, 64 (2013) 567-580.
[17] S. Pati, A. Borah, M.P. Boruah, P.R. Randive, Critical review on local thermal equilibrium and local thermal non-equilibrium approaches for the analysis of forced convective flow through porous media, International communications in heat and mass Transfer, 132 (2022) 105889.
[18] M.R. Salimi, M. Taeibi-Rahni, H. Rostamzadeh, Heat transfer and entropy generation analysis in a three-dimensional impinging jet porous heat sink under local thermal non-equilibrium condition, International Journal of Thermal Sciences, 153 (2020) 106348.
[19] H. Namadchian, I. Zahmatkesh, S.M.A. Alavi, Numerical simulation of nanofluid flow in an annulus with porous baffles based on combination of Darcy-Brinkman-Forchheimer model and two-phase mixture model, Amirkabir Journal of Mechanical Engineering, 53(3 (Special Issue) (2021) 1897-1914 [In Persian].
[20] F.T. Dórea, M.J. De Lemos, Simulation of laminar impinging jet on a porous medium with a thermal non-equilibrium model, International Journal of Heat and Mass Transfer, 53(23-24) (2010) 5089-5101.
[21] K. Yogi, M.M. Godase, M. Shetty, S. Krishnan, S. Prabhu, Experimental investigation on the local heat transfer with a circular jet impinging on a metal foamed flat plate, International Journal of Heat and Mass Transfer, 162 (2020) 120405.
[22] S.Y. Kim, M.H. Lee, K.-S. Lee, Heat removal by aluminum-foam heat sinks in a multi-air jet impingement, IEEE Transactions on components and packaging technologies, 28(1) (2005) 142-148.
[23] A.P. Rallabandi, D.-H. Rhee, Z. Gao, J.-C. Han, Heat transfer enhancement in rectangular channels with axial ribs or porous foam under through flow and impinging jet conditions, International Journal of Heat and Mass Transfer, 53(21-22) (2010) 4663-4671.
[24] H.-C. Sung, Y.-H. Liu, Heat transfer in rectangular channels with porous wire mesh under impinging jet conditions, International Journal of Thermal Sciences, 122 (2017) 92-101.
[25] M.J. de Lemos, C. Fischer, Thermal analysis of an impinging jet on a plate with and without a porous layer, Numerical Heat Transfer, Part A: Applications, 54(11) (2008) 1022-1041.
[26] H. Zhang, Z. Zou, Investigation of a confined laminar impinging jet on a plate with a porous layer using the preconditioned density-based algorithm, Numerical Heat Transfer, Part A: Applications, 61(4) (2012) 241-267.
[27] G.A. Rao, Y. Levy, M. Kitron-Belinkov, Heat transfer characteristics of a multiple jet impingement system, in: 48th Israeli Aerospace Conference, 2009, pp. 5-7.
[28] H. Heidary, M. Kermani, Enhancement of heat exchange in a wavy channel linked to a porous domain; a possible duct geometry for fuel cells, International communications in heat and mass transfer, 39(1) (2012) 112-120.
[29] Y. Xing, S. Spring, B. Weigand, Experimental and numerical investigation of heat transfer characteristics of inline and staggered arrays of impinging jets, Journal of Heat Transfer, 132(9) (2010).
[30] N. Zuckerman, N. Lior, Jet impingement heat transfer: physics, correlations, and numerical modeling, Advances in heat transfer, 39 (2006) 565-631.
[31] N. Chougule, G. Parishwad, P. Gore, S. Pagnis, S. Sapali, CFD analysis of multi-jet air impingement on flat plate, in Proceedings of the world congress on Engineering, July 6 - 8, 2011, London, U.K, pp. 2078-0958.
[32] F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA journal, 32(8) (1994) 1598-1605.
[33] M. Habibishandiz, M. Saghir, A critical review of heat transfer enhancement methods in the presence of porous media, nanofluids, and microorganisms, Thermal Science and Engineering Progress, (2022) 101267.
[34] S.M. Hosseinalipour, S. Rashidzadeh, M. Moghimi, K. Esmailpour, Numerical study of laminar pulsed impinging jet on the metallic foam blocks using the local thermal non-equilibrium model, Journal of Thermal Analysis and Calorimetry, 141 (2020) 1859-1874.
[35] L. Florschuetz, D.E. Metzger, C. Truman, Jet array impingement with crossflow-correlation of streamwise resolved flow and heat transfer distributions, NASA Contractor Report (1981): 3373.