مدلسازی دینامیکی و شناسایی پارامترهای مدل پیل سوختی پلیمری هیدروژن-اکسیژن با رطوبت‌زن یکپارچه

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه صنعتی مالک اشتر، پژوهشکده علوم و فناوری شمال، فریدونکنار، ایران

چکیده

پیل سوختی نوعی مبدل انرژی الکتروشیمیایی است که انرژی شیمیایی ذخیره شده در سوخت را به انرژی الکتریکی تبدیل می‌نماید. ساختار غیرخطی، دینامیک متغیر با زمان و پارامترهای فیزیکی نامعین از چالش‌های کار با پیل‌های سوختی پلیمری می‌باشد. در این مقاله، مدلسازی جعبه خاکستری و شناسایی سیستم پیل سوختی پلیمری هیدروژن-اکسیژن سه سلولی انتها باز با رطوبت‌زن یکپارچه مورد بررسی قرار گرفته است. در ابتدا، مدلسازی صفر بعدی غیرخطی سیالاتی، ترمودینامیکی و الکتروشیمیایی پیل سوختی انجام شده است. مدل پیل سوختی ارائه شده در این پژوهش از نوع چند ورودی-یک خروجی می‌باشد. در ادامه، پارامترهای ثابت پیل سوختی مورد مطالعه با استفاده از روش شناسایی پارامتر تعیین گردید. فرآیند شناسایی سیستم بر اساس کمینه‌سازی خطای پیش‌بینی، به روش ناحیه‌های صحیح انعکاسی نیوتن انجام شده است. پیل‌سوختی مورد نظر تحت شرایط مختلف دمای سری، فشار ورودی گازهای واکنش‌دهنده و جریان سری مورد آزمون قرار گرفت و 329420 داده آزمایشگاهی بدست آمده است که با توجه به شرایط آزمایش دسته‌بندی داده‌ها به 189 حالت مختلف صورت پذیرفت. نتایج نشان می‌دهد که میانگین خطای ولتاژ مدل پیل سوختی شناسایی شده در مقایسه با داده‌های آزمایشگاهی برابر با1/03 درصد می‌باشد. همچنین، همبستگی میان ولتاژ پیل‌سوختی و پارامترهای مدل‌ شناسایی شده بررسی و تحلیل شده است که نتایج نشان داد که همبستگی ولتاژ پیل‌سوختی به مقاومت تماسی معادل هدایت الکترون بیشتر از ضرایب اریفیس‌ها می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Dynamic Modeling and Parameter Identification of Hydrogen-Oxygen PEM Fuel Cell Model with Integrated Humidifier

نویسندگان [English]

  • Mohammad Mahdi Barzegari
  • Amirhossein pahnabi
Northern Research Center for Science and Technology, Malek Ashtar University of Technology
چکیده [English]

Fuel cell is a type of electrochemical energy converter that converts chemical energy stored in fuel into electrical energy. Nonlinear structure, time-varying dynamics and uncertain physical parameters are the challenges of working with polymer electrolyte membrane (PEM) fuel cells. In this paper, grey box modeling and system identification of flow-through H2/O2 PEM fuel cell with three cells and integrated humidifier is investigated. First, zero-dimensional nonlinear fluidic, thermodynamic and electrochemical modeling of PEM fuel cell is performed. The fuel cell model presented in this research is Multi-Input-Single-Output type. In the following, constant parameters of the studied fuel cell are determined. The system identification process as a multi-input-single-output system is done based on the Prediction-Error minimization, using the method of Trust-Region Reflective Newton. Finally, validation of the obtained model is done with experimental data that not used in modeling. The considered PEM fuel cell was tested under different conditions of temperature, reactant gas inlet pressure and stack current, and 329,420 experimental data were obtained. According to test conditions, data was classified into 189 different modes. The results show that the average voltage error of the identified model compared to the experimental data is equal to 1.03%. Moreover, the correlation between voltage and identified model parameters has been investigated, and the results showed that correlation between voltage and the contact resistance equivalent is higher than coefficients of orifices.

کلیدواژه‌ها [English]

  • PEM fuel cell
  • parameter identification
  • grey box modeling
  • integrated humidifier
  • experimental data
[1] Y. Wang, D.F.R. Diaz, K.S. Chen, Z. Wang, X.C. Adroher, Materials, technological status, and fundamentals of PEM fuel cells–a review, Materials today, 32 (2020) 178-203.
[2] J.T. Pukrushpan, A.G. Stefanopoulou, H. Peng, Control of fuel cell power systems: principles, modeling, analysis and feedback design, Springer Science & Business Media, 2004.
[3] N. Baharloo, E. Afshari, Methods of humidification of reactant gases of polymer electrolyte membrane fuel cells, Mechanical Engineering, 22(5) (2013) 49-59 (in Persian).
[4] V.K. Firouzjaei, S. Rahgoshay, M. Khorshidian, Planar membrane humidifier for fuel cell application: Numerical and experimental case study, International Journal of Heat and Mass Transfer, 147 (2020) 118872.
[5] M. Khorshidian, S.M. Rahgoshay, M. Rahimi, S.H. Masroori, Experimental study of performance of an integrated hydrogen-oxygen dead-end polymer electrolyte membrane fuel cell stack power system with a large active area and internal humidification system, Amirkabir Journal of Mechanical Engineering, 53(3) (2021) 19-19 (in Persian).
[6] R. Petrone, Z. Zheng, D. Hissel, M.-C. Péra, C. Pianese, M. Sorrentino, M. Béchérif, N. Yousfi-Steiner, A review on model-based diagnosis methodologies for PEMFCs, International Journal of Hydrogen Energy, 38(17) (2013) 7077-7091.
[7] I. Arsie, A. Di Domenico, C. Pianese, M. Sorrentino, A multilevel approach to the energy management of an automotive polymer electrolyte membrane fuel cell system, Journal of Fuel Cell Science and Technology, 7(1) (2010).
[8] A. Zeller, O. Rallieres, J. Regnier, C. Turpin, Diagnosis of a hydrogen/air fuel cell by a statistical model-based method, in:  Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, IEEE, pp. 1-6.
[9] A. Hernandez, D. Hissel, R. Outbib, Modeling and fault diagnosis of a polymer electrolyte fuel cell using electrical equivalent analysis, Energy Conversion, IEEE Transactions on, 25(1)  148-160.
[10] B. Carnes, N. Djilali, Systematic parameter estimation for PEM fuel cell models, Journal of Power Sources, 144(1) (2005) 83-93.
[11] A. Al-Othman, N.A. Ahmed, F. Al-Fares, M. AlSharidah, Parameter Identification of PEM Fuel Cell Using Quantum-Based Optimization Method, Arabian Journal for Science and Engineering, 40(9) (2015) 2619-2628.
[12] M.M. Barzegari, M. Dardel, E. Alizadeh, A. Ramiar, Dynamic modeling and validation studies of dead-end cascade H2/O2 PEM fuel cell stack with integrated humidifier and separator, Applied energy, 177 (2016) 298-308.
[13] M. Ye, X. Wang, Y. Xu, Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization, International journal of hydrogen energy, 34(2) (2009) 981-989.
[14] R.I. Salim, H. Noura, A. Fardoun, A parameter identification approach of a PEM fuel cell stack using particle swarm optimization, in:  ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 7th International Conference on Energy Sustainability, American Society of Mechanical Engineers, 2013, pp. V001T003A011-V001T003A011.
[15] S. De Lira, V. Puig, J. Quevedo, Robust LPV model-based sensor fault diagnosis and estimation for a PEM fuel cell system, in:  Control and Fault-Tolerant Systems (SysTol), 2010 Conference on, IEEE, pp. 819-824.
[16] S.L. Chavan, D.B. Talange, System identification black box approach for modeling performance of PEM fuel cell, Journal of Energy Storage, 18 (2018) 327-332.
[17] S. Kelouwani, K. Adegnon, K. Agbossou, Y. Dube, Online system identification and adaptive control for PEM fuel cell maximum efficiency tracking, IEEE Transactions on Energy Conversion, 27(3) (2012) 580-592.
[18] A.K. Pinagapani, G. Mani, K. Chandran, K. Pandian, E. Sawantmorye, P. Vaghela, Dynamic modeling and validation of PEM fuel cell via system identification approach, Journal of Electrical Engineering & Technology, 16(4) (2021) 2211-2220.
[19] D. Chen, W. Li, H. Peng, An experimental study and model validation of a membrane humidifier for PEM fuel cell humidification control, Journal of Power Sources, 180(1) (2008) 461-467.
[20] J. Alejandro, A. Arce, C. Bordons, Development and experimental validation of a PEM fuel cell dynamic model, Journal of power sources, 173(1) (2007) 310-324.
[21] C. Panos, K. Kouramas, M. Georgiadis, E. Pistikopoulos, Modelling and explicit model predictive control for PEM fuel cell systems, Chemical Engineering Science, 67(1) (2012) 15-25.
[22] J.H. Nam, M. Kaviany, Effective diffusivity and water-saturation distribution in single-and two-layer PEMFC diffusion medium, International Journal of Heat and Mass Transfer, 46(24) (2003) 4595-4611.
[23] C. Ziogou, S. Voutetakis, S. Papadopoulou, M.C. Georgiadis, Modeling, simulation and experimental validation of a PEM fuel cell system, Computers & Chemical Engineering, 35(9) (2011) 1886-1900.
[24] M. Outeiro, R. Chibante, A. Carvalho, A. De Almeida, A parameter optimized model of a proton exchange membrane fuel cell including temperature effects, Journal of Power Sources, 185(2) (2008) 952-960.
[25] N.C. Schwertman, R. de Silva, Identifying outliers with sequential fences, Computational statistics & data analysis, 51(8) (2007) 3800-3810.
[26] H. Liu, M. Cocea, Semi-random partitioning of data into training and test sets in granular computing context, Granular Computing, 2(4) (2017) 357-386.
[27] M.M. Barzegari, M. Dardel, A. Ramiar, E. Alizadeh, An investigation of temperature effect on performance of dead-end cascade H2/O2 PEMFC stack with integrated humidifier and separator, International Journal of Hydrogen Energy, 41(4) (2016) 3136-3146.
[28] C.-W. Yang, Y.-S. Chen, A mathematical model to study the performance of a proton exchange membrane fuel cell in a dead-ended anode mode, Applied energy, 130 (2014) 113-121.