تحلیل رفتار آیروالاستیک صفحه کامپوزیتی نازک با استفاده از تئوری پیستون، با اثر نقص هندسی کلی و محلی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

2 دانشکده مهندسی مکانیک، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

تحلیل آیروالاستیسیته صفحه مواد مرکب نازک تحت اثر نقص هندسی و بارهای خارجی، حائز اهمیت می‌باشد. در این پژوهش اثر نوع و تعداد لایه‌ها، زاویه الیاف و بار مکانیکی داخل صفحه در ترکیب با نقص هندسی به عنوان یک ترکیب جدید در مباحث آیروالاستیسیته مورد بررسی قرار گرفته است. با استفاده از اصل کار مجازی، روابط حاکم براساس تئوری صفحه نازک کرشهف تعیین شده است. سپس با استفاده از روش مودهای فرضی در تئوری باقی‌مانده وزنی گالرکین، معادلات دیفرانسیلی جزئی به معادلات دیفرانسیلی معمولی تبدیل شده است. بعد از بی‌بعد سازی، روابط نهایی با استفاده از روش عددی رانج-کوتا حل شده و نتایج حوزه زمانی برای تعیین رفتار فلاتر و پسا فلاتر صفحه استخراج شده است. نتایج تحلیل نشان داد که نقص هندسی با تولید بار غیر یکنواخت و نامتقارن، نوع لایه‌چینی، تعداد لایه‌ها و بارهای مکانیکی در جابجایی مرز فلاتر صفحه موثر است. اثر نقص هندسی محلی در تعیین مرز فلاتر لزوما ناپایدار کننده نیست، بلکه در مواردی بسته به اندازه و مکان نقص، امکان افزایش پایداری در مرز فلاتر صفحه را نیز دارد. به علاوه رفتار دینامیکی صفحه تحت اثر نقص هندسی محلی با اشکال و ابعاد مختلف، بسیار متنوع‌ و متفاوت با نوع نقص کلی (شکل مود اول) یا پوسته با انحنای کوچک است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Aeroelastic analysis of a thin composite plate, with the effect of general and local geometric defects

نویسندگان [English]

  • Hamid moosazadeh 1
  • Mohammad Mahdi Mohammadi 2
1 tarbiat modares univercity of technology
2 Faculty of Mechanic - Malek Ashtar University of Technology- Tehran- Iran
چکیده [English]

In this study, the effect of laminate type and number of layers, fiber angle and modulus of elasticity in combination with the effect of global and local geometric defects has been investigated as a new combination in the field of aeroelasticity. Using the principle of virtual work, by directly integrating the problem-solving boundary, the governing equations are determined based on Kirchhoff thin-plate theory. Then, using the assumption mode method in Galerkin's theory, the partial differential equations are converted to ordinary nonlinear differential equations. The final nonlinear equations are solved using the Runge–Kutta numerical method and the time domain results are extracted to determine the flutter and post-flutter behavior of the plate. The results of the analysis showed that the geometric defect with non-uniform and asymmetric load production, the type of layering, the number of layers and mechanical loads are effective on the plane flutter boundary. The effect of local geometric defects in determining the flutter border is not necessarily destabilizing, but in some cases, depending on the size and location of the defect, it is also possible to increase the stability of the plane flutter boundary. In addition, the dynamic behavior of the plate under the effect of local geometric defects with different shapes and dimensions is very diverse and different from the of general defect (first mode shape) or shell with small curvature.

کلیدواژه‌ها [English]

  • Thin orthotropic composite plate
  • aeroelastic analysis
  • specific heat coefficient
  • post-flutter behavior
  • geometric defects
[1] R.O. Stearman, M. Lock, Y.-c. Fung, Ames tests on the flutter of cylindrical shells, Graduate Aeronautical Laboratories, California Institute of Technology, 1962.
[2] E.H. Dowell, Nonlinear flutter of curved plates, AIAA Journal, 7(3) (1969) 424-431.
[3] E.H. Dowell, Nonlinear flutter of curved plates. II, AIAA Journal, 8(2) (1970) 259-261.
[4] W.J. Anderson, Experiments on the flutter of flat and slightly curved panels at Mach number 2.81, CALIFORNIA INST OF TECH PASADENA GRADUATE AERONAUTICAL LABS, 1962.
[5] J.W. Sawyer, Flutter and buckling of general laminated plates, Journal of Aircraft, 14(4) (1977) 387-393.
[6] L. Shiau, L. Lu, Nonlinear flutter of composite laminated plates, Mathematical and Computer Modelling, 14 (1990) 983-988.
[7] I.R. Dixon, C. Mei, Nonlinear flutter of rectangular composite panels under uniform temperature using finite elements, Nonlinear vibrations,  (1992) 123-132.
[8] l.R. Dixon, C. Mei, Finite element analysis of large-amplitude panel flutter of thin laminates, AIAA journal, 31(4) (1993) 701-707.
[9] R. Zhou, D.Y. Xue, C. Mei, Finite element time domain-modal formulation for nonlinear flutter of composite panels, AIAA journal, 32(10) (1994) 2044-2052.
[10] N. Chandiramani, L. Librescu, R. Plaut, Flutter of geometrically-imperfect shear-deformable laminated flat panels using non-linear aerodynamics, Journal of sound and vibration, 192(1) (1996) 79-100.
[11] N.K. Chandiramani, R.H. Plaut, L.I. Librescu, Non-linear flutter of a buckled shear-deformable composite panel in a high-supersonic flow, International journal of non-linear mechanics, 30(2) (1995) 149-167.
[12] L. Librescu, P. Marzocca, W.A. Silva, Supersonic/hypersonic flutter and postflutter of geometrically imperfect circular cylindrical panels, Journal of Spacecraft and Rockets, 39(5) (2002) 802-812.
[13] L.R. Kumar, P. Datta, D. Prabhakara, Dynamic instability characteristics of laminated composite doubly curved panels subjected to partially distributed follower edge loading, International Journal of Solids and Structures, 42(8) (2005) 2243-2264.
[14] I.-K. Oh, D.-H. Kim, Vibration characteristics and supersonic flutter of cylindrical composite panels with large thermoelastic deflections, Composite structures, 90(2) (2009) 208-216.
[15] W.-H. Shin, I.-K. Oh, I. Lee, Nonlinear flutter of aerothermally buckled composite shells with damping treatments, Journal of Sound and Vibration, 324(3-5) (2009) 556-569.
[16] H.H. Ibrahim, H.H. Yoo, K.-S. Lee, Aero-thermo-mechanical characteristics of imperfect shape memory alloy hybrid composite panels, Journal of Sound and Vibration, 325(3) (2009) 583-596.
[17] L.K. Abbas, X. Rui, P. Marzocca, M. Abdalla, R. De Breuker, A parametric study on supersonic/hypersonic flutter behavior of aero-thermo-elastic geometrically imperfect curved skin panel, Acta mechanica, 222(1) (2011) 41-57.
[18] W. Xia, Q. Ni, Parametric study on supersonic flutter of angle-ply laminated plates using shear deformable finite element method, Acta Mechanica Sinica, 27(5) (2011) 749-756.
[19] L.-C. Shiau, S.-Y. Kuo, Y.-P. Liu, Aerothermoelastic analysis of composite laminated plates, Composite Structures, 94(6) (2012) 1982-1990.
[20] M. Ghadimi, M. Dardel, M. Pashaei, M. Barzegari, Effects of geometric imperfections on the aeroelastic behavior of functionally graded wings in supersonic flow, Aerospace Science and Technology, 23(1) (2012) 492-504.
[21] J. Li, Y. Narita, Analysis and optimal design for supersonic composite laminated plate, Composite Structures, 101 (2013) 35-46.
[22] Z.-G. Song, F.-M. Li, Aerothermoelastic analysis of nonlinear composite laminated panel with aerodynamic heating in hypersonic flow, Composites Part B: Engineering, 56 (2014) 830-839.
[23] H. Nguyen-Van, N. Nguyen-Hoai, T. Chau-Dinh, T. Nguyen-Thoi, Geometrically nonlinear analysis of composite plates and shells via a quadrilateral element with good coarse-mesh accuracy, Composite structures, 112 (2014) 327-338.
[24] X. An, B.C. Khoo, Y. Cui, Nonlinear aeroelastic analysis of curved laminated composite panels, Composite Structures, 179 (2017) 377-414.
[25] A. Muc, Natural frequencies of rectangular laminated plates—Introduction to optimal design in aeroelastic problems, Aerospace, 5(3) (2018) 95.
[26] H. Moosazadeh, M.M. Mohammadi, Time domain aero-thermo-elastic instability of two-dimensional non-linear curved panels with the effect of in-plane load considered, SN Applied Sciences, 2 (2020) 1-17.
[27] M. Farrokh, M. R. Fallah, Determination of the Flutter Instability Boundary of a Composite Wing Using Support Vector Machine, Amirkabir Journal of Mechanical Engineering, 52(12) (2021) 825-828 (in persian).
[28] M. Ganapathi, S. Aditya, S. Shubhendu, O. Polit, T.B. Zineb, Nonlinear supersonic flutter study of porous 2D curved panels including graphene platelets reinforcement effect using trigonometric shear deformable finite element, International Journal of Non-Linear Mechanics, 125 (2020) 103543.
[29] W. Tian, T. Zhao, Z. Yang, Theoretical modelling and design of metamaterial stiffened plate for vibration suppression and supersonic flutter, Composite Structures, 282 (2022) 115010.
[30] B.I. Epureanu, L.S. Tang, M.P. Paı̈doussis, Coherent structures and their influence on the dynamics of aeroelastic panels, International Journal of Non-Linear Mechanics, 39(6) (2004) 977-991.
[31] S. Kitipornchai, J. Yang, K. Liew, Semi-analytical solution for nonlinear vibration of laminated FGM plates with geometric imperfections, International Journal of Solids and Structures, 41(9-10) (2004) 2235-2257.
[32] P. Singh, V. Sundararajan, Y. Das, Large amplitude vibration of some moderately thick structural elements, Journal of Sound and Vibration, 36(3) (1974) 375-387.
[33] C. Lin, L.-W. Chen, Large-amplitude vibration of an initially imperfect moderately thick plate, Journal of Sound and Vibration, 135(2) (1989) 213-224.