خازن‌های مدارهای جنبش مغناطیسی مبتنی بر طرح TI به منظور ذخیره‌سازی ذرات و سلول‌ها در یک میدان مغناطیسی سه‌بعدی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه هوافضا، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

2 گروه مهندسی برق، دانشکده فنی و مهندسی، دانشگاه نیشابور، نیشابور، ایران

چکیده

یکی از اهداف مهم در حوزه آزمایشگاه بر روی تراشه، انتقال ریزذرات میکرومتری و سلول‌ها بر روی تراشه‌های ریزسیالی است. استفاده از نیروهای مغناطیسی با امکان کنترل از راه دور حرکت ذرات، از مناسب‌ترین روشها در این زمینه است. به تازگی، با الهام از مدارهای الکترونیکی و به منظور انتقال کنترل شده ذرات بر روی تراشه در یک میدان مغناطیسی سه‌بعدی، مدارهای جنبش مغناطیسی معرفی شده‌اند که مبتنی بر فیلم نازک مغناطیسی با طرح TI هستند. اما تا به امروز در این مدارها از خازن به منظور ذخیره‌سازی ذرات منتقل شده استفاده نشده است. در این پژوهش، خازن‌های مدارهای جنبش مغناطیسی مبتنی بر طرح TI پیشنهاد شده و مشخصه‌یابی می‌شود. عملکرد خازن معرفی شده برای ذخیره‌سازی ذرات با قطرهای مختلف در میدان‌های مغناطیسی دوار با فرکانس‌های مختلف بررسی می‌شود. در این راستا، از روش‌های اجزاء محدود برای شبیه‌سازی توزیع انرژی پتانسیل مغناطیسی حاصل از فیلم نازک مغناطیسی استفاده می‌شود. همچنین، حرکت ذرات در محیط سیال، با در نظر گرفتن نیروی پسا با روش شبه تحلیلی و تحلیل تصادفی مطالعه شده و اعتبار نتایج با آزمایش‌های تجربی تایید می‌گردد. در فرکانس کاری0/1 هرتز راندمان ذخیره‌سازی ذره معادل 98 درصد به‌دست آمد. با قرار گرفتن این عنصر مداری در مدارهای جنبش مغناطیسی، تراشه مورد نظر تکمیل شده و کاربردهای مهمی در سیستمهای آزمایشگاه بر روی تراشه، زیست شناسی تک سلولی، و غربال‌گری دارویی خواهد داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

TI Magnetophoretic Capacitors for Storing Particles and Cells in a Tri-Axial Magnetic Field

نویسندگان [English]

  • Roozbeh Abedini-Nassab 1
  • Sajjad Bahrami 2
1 Aerospace Engineering, Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
2 Department of Electrical Engineering, Faculty of Technology and Engineering, University of Neyshabur, Neyshabur, Iran
چکیده [English]

One of the main goals in the field of lab-on-a-chip is the manipulation of microparticles and cells on microfluidic chips. Methods based on magnetic forces, with remote controllability over particle movement, are considered one of the most appealing techniques toward this goal. Recently, inspired by electronic circuits and to transport particles in a controlled fashion in a tri-axial magnetic field, magnetophoretic circuits based on TI-shaped magnetic thin films are introduced. However, to date, capacitors are not used in order to store transported particles in these circuits. Here, TI magnetophoretic capacitors are introduced and characterized. The capability of the capacitor for storing particles of different sizes at various rotating magnetic field frequencies is studied. Towards this goal, finite element methods are used to simulate the magnetic potential energy distribution created by the magnetic thin films. Also, the trajectory of the magnetic particles, considering the drag forces, based on semi-analytical analysis and statistical methods, is investigated. The simulation results are validated experimentally. At the operating frequency of 0.1 Hz loading efficiency of 98% was achieved. Adding this circuit element to the magnetophoretic circuits results in a complete chip, with important applications in lab-on-a-chip systems, single-cell biology, and drug screening.

کلیدواژه‌ها [English]

  • Magnetophoretic circuits
  • capacitors
  • magnetic microparticles
  • particle transport
  • microfluidics
[1] Y.M. Bae, B. Jeong, J.-I. Kim, D.-G. Kang, K.Y. Shin, D.-W. Yoo, Array of 3D permanent micromagnet for immunomagnetic separation, Journal of Micromechanics and Microengineering, 29(8) (2019) 085007.
[2] L.F. Huergo, K.A. Selim, M.S. Conzentino, E.C.M. Gerhardt, A.R.S. Santos, B. Wagner, J.T. Alford, N. Deobald, F.O. Pedrosa, E.M. de Souza, M.B. Nogueira, S.M. Raboni, D. Souto, F.G.M. Rego, D.L. Zanette, M.N. Aoki, J.M. Nardin, B. Fornazari, H.M.P. Morales, V.A. Borges, A. Nelde, J.S. Walz, M. Becker, N. Schneiderhan-Marra, U. Rothbauer, R.A. Reis, K. Forchhammer, Magnetic Bead-Based Immunoassay Allows Rapid, Inexpensive, and Quantitative Detection of Human SARS-CoV-2 Antibodies, ACS Sens, 6(3) (2021) 703-708.
[3] R. Abedini-Nassab, M. Pouryosef Miandoab, M. Şaşmaz, Microfluidic Synthesis, Control, and Sensing of Magnetic  Nanoparticles. A Review, Micromachines, 12(7) (2021) 768.
[4] R. Abedini-Nassab, M. Eslamian, Recent patents and advances on applications of magnetic nanoparticles and thin films in cell manipulation, Recent Pat Nanotechnol, 8(3) (2014) 157-164.
[5] D. Di Carlo, D. Irimia, R.G. Tompkins, M. Toner, Continuous inertial focusing, ordering, and separation of particles in microchannels, Proc Natl Acad Sci U S A, 104(48) (2007) 18892-18897.
[6] S.T. Gebreyesus, A.A. Siyal, R.B. Kitata, E.S. Chen, B. Enkhbayar, T. Angata, K.I. Lin, Y.J. Chen, H.L. Tu, Streamlined single-cell proteomics by an integrated microfluidic chip and data-independent acquisition mass spectrometry, Nat Commun, 13(1) (2022) 37.
[7] R. Abedini-Nassab, S.M. Emami, A.N. Nowghabi, Nanotechnology and Acoustics in Medicine and Biology, Recent Pat Nanotechnol, 16(3) (2022) 198-206.
[8] W. Connacher, N. Zhang, A. Huang, J. Mei, S. Zhang, T. Gopesh, J. Friend, Micro/nano acoustofluidics. materials, phenomena, design, devices, and applications, Lab Chip, 18(14) (2018) 1952-1996.
[9] Y. Zhang, X. Chen, Particle separation in microfluidics using different modal ultrasonic standing waves, Ultrason Sonochem, 75 (2021) 105603.
[10] S. M. Zareei, M. Jamshidian, S. Sepehrirahnama, S. Ziaei-Rad, A Review of Studies on the Motion of Particles Under the Influence of Acoustic Waves in Microfluidic Systems, Amirkabir J. Mech. Eng., 52(7) (2020) 475-478 (In Persian).
[11] C.J. Bustamante, Y.R. Chemla, S. Liu, M.D. Wang, Optical tweezers in single-molecule biophysics, Nature Reviews Methods Primers, 1(1) (2021) 25.
[12] P.Y. Chiou, A.T. Ohta, M.C. Wu, Massively parallel manipulation of single cells and microparticles using optical images, Nature, 436(7049) (2005) 370-372.
[13] M. Punjiya, H.R. Nejad, J. Mathews, M. Levin, S. Sonkusale, A flow through device for simultaneous dielectrophoretic cell trapping and AC electroporation, Sci Rep, 9(1) (2019) 11988.
[14] K. Samlali, F. Ahmadi, A.B.V. Quach, G. Soffer, S.C.C. Shih, One Cell, One Drop, One Click: Hybrid Microfluidics for Mammalian Single Cell Isolation, Small, 16(34) (2020) e2002400.
[15] A.F. Aissa, A.B.M.M. Islam, M.M. Ariss, C.C. Go, A.E. Rader, R.D. Conrardy, A.M. Gajda, C. Rubio-Perez, K. Valyi-Nagy, M. Pasquinelli, L.E. Feldman, S.J. Green, N. Lopez-Bigas, M.V. Frolov, E.V. Benevolenskaya, Single-cell transcriptional changes associated with drug tolerance and response to combination therapies in cancer, Nat Commun, 12(1) (2021) 1628.
[16] K. Peng, D. Sant, N. Andersen, R. Silvera, V. Camarena, G. Pinero, R. Graham, A. Khan, X.M. Xu, G. Wang, P.V. Monje, Magnetic separation of peripheral nerve-resident cells underscores key molecular features of human Schwann cells and fibroblasts an immunochemical and transcriptomics approach, Sci Rep, 10 (2020) 18433.
[17] R.S. Molday, S.P. Yen, A. Rembaum, Application of magnetic microspheres in labelling and separation of cells, Nature, 268(5619) (1977) 437-438.
[18] K.Y. Lien, J.L. Lin, C.Y. Liu, H.Y. Lei, G.B. Lee, Purification and enrichment of virus samples utilizing magnetic beads on a microfluidic system, Lab Chip, 7(7) (2007) 868-875.
[19] D.G. Rackus, M.D. Dryden, J. Lamanna, A. Zaragoza, B. Lam, S.O. Kelley, A.R. Wheeler, A digital microfluidic device with integrated nanostructured microelectrodes for electrochemical immunoassays, Lab Chip, 15(18) (2015) 3776-3784.
[20] Z.H. Fan, S. Mangru, R. Granzow, P. Heaney, W. Ho, Q. Dong, R. Kumar, Dynamic DNA hybridization on a chip using paramagnetic beads, Anal Chem, 71(21) (1999) 4851-4859.
[21] X. Shi, C.H. Chen, W. Gao, S.H. Chao, D.R. Meldrum, Parallel RNA extraction using magnetic beads and a droplet array, Lab Chip, 15(4) (2015) 1059-1065.
[22] S. Klein, T.G. Muller, D. Khalid, V. Sonntag-Buck, A.M. Heuser, B. Glass, M. Meurer, I. Morales, A. Schillak, A. Freistaedter, I. Ambiel, S.L. Winter, L. Zimmermann, T. Naumoska, F. Bubeck, D. Kirrmaier, S. Ullrich, I. Barreto Miranda, S. Anders, D. Grimm, P. Schnitzler, M. Knop, H.G. Krausslich, V.L. Dao Thi, K. Borner, P. Chlanda, SARS-CoV-2 RNA Extraction Using Magnetic Beads for Rapid Large-Scale Testing by RT-qPCR and RT-LAMP, Viruses, 12(8) (2020) 863.
[23] S. Berensmeier, Magnetic particles for the separation and purification of nucleic acids, Appl Microbiol Biotechnol, 73(3) (2006) 495-504.
[24] M. Heiss, F. Hagelskamp, V. Marchand, Y. Motorin, S. Kellner, Cell culture NAIL-MS allows insight into human tRNA and rRNA modification dynamics in vivo, Nat Commun, 12(1) (2021) 389.
[25] A. Shamloo, A. Naghdloo, M. Besanjideh, Cancer cell enrichment on a centrifugal microfluidic platform using hydrodynamic and magnetophoretic techniques, Sci Rep, 11(1) (2021) 1939.
[26] A. Omelyanchik, E. Levada, J. Ding, S. Lendinez, J. Pearson, M. Efremova, V. Bessalova, D. Karpenkov, E. Semenova, I. Khlusov, L. Litvinova, M. Abakumov, A. Majouga, N. Perov, V. Novosad, V. Rodionova, Design of Conductive Microwire Systems for Manipulation of Biological Cells, IEEE Transactions on Magnetics, 54(6) (2018) 1-5.
[27] D. Tukmachev, O. Lunov, V. Zablotskii, A. Dejneka, M. Babic, E. Syková, Š. Kubinová, An effective strategy of magnetic stem cell delivery for spinal cord injury therapy, Nanoscale, 7(9) (2015) 3954-3958.
[28] L. Luo, Y. He, Magnetically driven microfluidics for isolation of circulating tumor cells, Cancer Med,  9(12) (2020) 4207-4231.
[29] R. Prucek, A. Panáček, Ž. Gajdová, R. Večeřová, L. Kvítek, J. Gallo, M. Kolář, Specific detection of Staphylococcus aureus infection and marker for Alzheimer disease by surface enhanced Raman spectroscopy using silver and gold nanoparticle-coated magnetic polystyrene beads, Sci Rep, 11(1) (2021) 6240.
[30] A. Chen, T. Byvank, W.J. Chang, A. Bharde, G. Vieira, B.L. Miller, J.J. Chalmers, R. Bashir, R. Sooryakumar, On-chip magnetic separation and encapsulation of cells in droplets, Lab Chip, 13(6) (2013) 1172-1181.
[31] G. Zhang, B.T. Luk, X. Wei, G.R. Campbell, R.H. Fang, L. Zhang, S.A. Spector, Selective cell death of latently HIV-infected CD4, Cell Death Dis, 10(6) (2019) 419.
[32] A. Naamati, J.C. Williamson, E.J. Greenwood, S. Marelli, P.J. Lehner, N.J. Matheson, Functional proteomic atlas of HIV infection in primary human CD4+ T cells, Elife, 8 (2019) e41431.
[33] V. Du, N. Luciani, S. Richard, G. Mary, C. Gay, F. Mazuel, M. Reffay, P. Menasche, O. Agbulut, C. Wilhelm, A 3D magnetic tissue stretcher for remote mechanical control of embryonic stem cell differentiation, Nat Commun, 8(1) (2017) 400.
[34] B. Lim, V. Reddy, X. Hu, K. Kim, M. Jadhav, R. Abedini-Nassab, Y.W. Noh, Y.T. Lim, B.B. Yellen, C. Kim, Magnetophoretic circuits for digital control of single particles and cells, Nat Commun, 5 (2014) 3846.
[35] R. Abedini-Nassab, S. Bahrami, Synchronous control of magnetic particles and magnetized cells in a tri-axial magnetic field, Lab on a Chip, 21 (2021) 1998-2007.
[36] R. Abedini-Nassab, D.Y. Joh, M.A. Van Heest, J.S. Yi, C. Baker, Z. Taherifard, D.M. Margolis, J.V. Garcia, A. Chilkoti, D.M. Murdoch, B.B. Yellen, Characterizing the Switching Thresholds of Magnetophoretic Transistors, Adv Mater, 27(40) (2015) 6176-6180.
[37] R. Abedini-Nassab, D.Y. Joh, M. Van Heest, C. Baker, A. Chilkoti, D.M. Murdoch, B.B. Yellen, Magnetophoretic Conductors and Diodes in a 3D Magnetic Field, Adv Funct Mater, 26(22) (2016) 4026-4034.
[38] J.A. Stratton, Electromagnetic theory, McGraw-Hill Book Company, Inc, 1941.
[39] P.K. Panigrahi, Transport Phenomena in Microfluidic Systems, Wiley, 2015.