طراحی استراتژی ترمزگیری مشارکتی بهینه با تلفیق سیستم ترمز مکانیکی و احیاکننده برای خودروی برقی مجهز به موتوردرچرخ

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه شهید باهنر کرمان، بخش مهندسی مکانیک، کرمان، ایران

چکیده

امروزه نسل جدیدی از خودروهای الکتریکی با فنّاوری موتوردرچرخ معرفی‌شده و در حال‌ توسعه است. افزایش بازده سیستم، حذف واسطه‌های مکانیکی و دستیابی به گشتاور ترمزی احیاکننده با عملکرد بهتر، از دلایل توسعه این تکنولوژی است. در این مقاله ابتدا یک مدل پنج درجه آزادی نصف خودرو با در نظر گرفتن یک خودرو مجهز به دو موتوردرچرخ در محور عقب، به‌عنوان خودروی نمونه، توسعه داده‌شده است. سپس یک استراتژی ترمزگیری با استفاده از کنترل‌کننده غیرخطی پیش‌بین دو مرحله‌ای طراحی و پیاده‌سازی گردیده‌ است. در مرحله اول فشار مناسب برای خطوط روغن ترمز حاصل می‌شود. در مرحله دوم، مقدار مناسب گشتاور احیاکننده الکتریکی با در نظر گرفتن ظرفیت جبرانی توزیع گشتاور ترمزی سیستم ترمز و با در نظر گرفتن تمامی قیود تأثیرگذار، به‌ دست می‌آید. مقدار گشتاور احیاکننده با در نظر گرفتن قیود سیستم، با به‌کارگیری روش بهینه‌سازی مقید کاروش- کان- تاکر حاصل می‌شود. در آخر استراتژی طراحی‌شده از دیدگاه مصرف انرژی و پیمایش خودرو مورد بررسی قرار‌ می‌گیرد. نتایج نشان می‌دهد با کمک کنترل‌کننده طراحی‌شده و مدل ارائه‌شده می‌توان ترمزگیری بهینه‌ای انجام داد. از طرف دیگر با استفاده از استراتژی ترمزگیری معرفی‌شده و سیستم کنترلی طراحی‌شده می‌توان مقدار بازگشت انرژی به باتری را در حین ترمزگیری در مقایسه با استراتژی‌های موازی و سری-موازی توسعه داده شده در سایر مطالعات، افزایش داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimal cooperative braking strategy design of regenerative and mechanical braking systems for in-wheel drive electric vehicles

نویسندگان [English]

  • Ali Hosseini Salari
  • Hossein Mirzaeinejad
  • Majid Fooladi Mahani
Department of Mechanical Engineering, Shahid Bahonar University of Kerman
چکیده [English]

Nowadays, a new generation of electric vehicles with in-wheel motor technology has been introduced and is being developed. Increasing system efficiency, eliminating mechanical intermediaries, and achieving regenerative braking torque with better performance are the motivations to seek to improve this technology. In the present study, a half-car model with five degrees of freedom has been developed by considering a vehicle equipped with two in-wheel motors on the rear axle as a sample vehicle. Then, the braking strategy has been designed using a two-stage nonlinear predictive controller. The appropriate pressure for the brake fluid lines will be reached in the first stage. In the second stage, the proper amount of electric regenerative torque is obtained using the electronic braking force distribution function and considering all constraints. The amount of regenerative torque is calculated by considering the system constraints using the Karush–Kuhn–Tucker conditions. Finally, the designed strategy is examined from the perspective of vehicle mileage capability. The results show that optimal braking can be achieved by utilizing the designed controller and the proposed model. Also, the amount of regenerated energy to the battery can be increased during braking by using the proposed braking strategy and the designed control system in comparison with the relevant studies.

کلیدواژه‌ها [English]

  • Cooperative braking system
  • electric vehicle
  • regenerative braking
  • mileage
  • electric brake torque distribution system
  1. Un-Noor, S. Padmanaban, L. Mihet-Popa, M. N. Mollah, and E. Hossain, A comprehensive study of key electric vehicle (EV) components, technologies, challenges, impacts, and future direction of development, Energies, 10 (8),(2017), 1–82.
  2. Xin and Z. Chengning, Optimal Design of Electric Vehicle Power System with the Principle of Minimum Curb Mass, Energy Procedia, (105),(2017), 2629–2634.
  3. Kühlwein, J. German, and A. Bandivadekar, Development of test cycle conversion factors among worldwide light duty vehicle CO2 emission standards, International Council on Clean Transportation, (2014), 1-61.
  4. Park and M. Lim, Design of High Power Density and High Efficiency Wound-Field Synchronous Motor for Electric Vehicle Traction, IEEE Access, (7),(2019), 46677–46685.
  5. Luthra, Comparison of Characteristics of Various Motor Drives Currently Used in Electric Vehicle Propulsion System, Int. J. Mech. Prod. Eng., no. 5, pp. 2320–2092, 2017.
  6. Sopanen, A. Mikkola, K. Kerkkänen, M. Tehrani, and J. Kelkka, Electric Vehicle Energy Consumption Simulation by Modeling the Efficiency of Driveline Components, SAE Int. J. Commer. Veh.9(1), (2018),31-39.
  7. Qiu and G. Wang, New evaluation methodology of regenerative braking contribution to energy efficiency improvement of electric vehicles, Energy Convers. Manag., (119),(2016), 389–398.
  8. Ustkoyuncu, Application of an in-wheel direct drive motor based on switched reluctance motors for low-power electric vehicles,Adhana-Academy Proc. Eng. Sci., . 44(1),(2019) 1–11.
  9. Sina, V. Esfahanian, M. R. Hairi Yazdi, and S. Azadi, Introducing the Modified Tire Power Loss and Resistant Force Regarding Longitudinal Slip, SAE Int. J. Passeng. Cars - Mech. Syst., 11(2),(2018) 6–11.
  10. Liu, Y. Lei, Y. Fu, and X. Li, Multi-Objective Optimization Study of Regenerative Braking Control Strategy for Range-Extended Electric Vehicle, Appl. Sci., 10(5), (2020),1789-1809.
  11. Xiong, X. Zhu, and R. Zhang, Energy recovery strategy numerical simulation for dual axle drive pure electric vehicle based on motor loss model and big data calculation, Complexity 2018, (2018), 1076-2787.
  12. Kubaisi, Adaptive Regenerative Braking in Electric Vehicles, Ph.D Thesis, Karlsruher Institut für Technologie (KIT),(2018).
  13. Guo, X. Jian, and G. Lin, Performance evaluation of an anti-lock braking system for electric vehicles with a fuzzy sliding mode controller, Energies, 7(10),(2014), 6459–6476.
  14. Li, H. Du, and W. Li, Driver intention based coordinate control of regenerative and plugging braking for electric vehicles with in-wheel PMSMs, 12(10), (2018),1300-1311.
  15. C. Wang and R. He, Hydraulic anti-lock braking control strategy of a vehicle based on a modified optimal sliding mode control method, Proc. Inst. Mech. Eng. Part D J. Automob. Eng., 233(12), (2019), 3185–3198.
  16. Qiu, G. Wang, M. Meng, and Y. Shen, A novel control strategy of regenerative braking system for electric vehicles under safety critical driving situations, Energy, (149),(2018), 329–340.
  17. Xiao, H. Lu, H. Wang, J. Ruan, and N. Zhang, Enhanced regenerative braking strategies for electric vehicles: Dynamic performance and potential analysis, Energies,10(11), (2017).
  18. Xu, H. Chen, H. Zhao, and B. Ren, Torque optimization control for electric vehicles with four in-wheel motors equipped with regenerative braking system, Mechatronics, (57), (2018), 95–108.
  19. Kakhki, Modeling of losses in a permanent magnet machine fed by a PWM supply Modeling of losses in a permanent magnet machine fed by a PWM supply, Ph.D Thesis, University of LAVAL ,(2016).
  20. B. Pacejka, Tire Characteristics and Vehicle Handling and Stability, in Tire and Vehicle Dynamics, Elsevier, (2012), 1–58.
  21. Mirzaeinejad, Robust predictive control of wheel slip in antilock braking systems based on radial basis function neural network, Appl. Soft Comput. J., (70),(2018),318–329.
  22. Mirzaei, H. Mirzaeinejad, S. Vahidi Heidarien, D., Khosrowjerdi, Nonlinear control and estimation of tire longitudinal slip for using in anti -lock braking system, Journal of Control, 5(4),(2019) 31 -42. (In Persian)
  23. Mirzaeinejad, M. Mirzaei, and S. Rafatnia, A novel technique for optimal integration of active steering and differential braking with estimation to improve vehicle directional stability, ISA Trans., (80),(2018), 513–527.
  24. Reif, Brakes , Brake Control and Driver Assistance Systems: Function, Regulation and Components, Springer Vieweg; 2015th edition. (2015), 94-142
  25. Limpert, Brake Design and Safety-Third Edition, SAE International (2011), 120-165
  26. Mirzaei and H. Mirzaeinejad, Fuzzy Scheduled Optimal Control of Integrated Vehicle Braking and Steering Systems,” IEEE/ASME Trans. Mechatronics, 22(5), (2017), 2369–2379.
  27. Mirzaeinejad, Optimization-based nonlinear control laws with increased robustness for trajectory tracking of non-holonomic wheeled mobile robots, Transp. Res. Part C Emerg. Technol., 101(1),(2019),1–17.
  28. M. Shafei and H. Mirzaeinejad, A General Formulation for Managing Trajectory Tracking in Non-holonomic Moving Manipulators with Rotary-Sliding Joints, J. Intell. Robot. Syst. Theory Appl., 99(3–4),(2020), 729–746.
  29. H. Chen, D. J. Ballance, and P. J. Gawthrop, “Optimal control of nonlinear systems: A predictive control approach,” Automatica, 39(4),(2003), 633–641
  30. Slotine, Applied Nonlinear Control, New Jersey, Prentice Hall, (1991), 476-495.
  31. Albin Rajasingham, Nonlinear Model Predictive Control,Springer Nature Switzerland AG, (2021), 101-137.
  32. Khalil, H. Nonlinear Control. In Nonlinear Control, Pearson.(2015), 551-588.
  33. Redondo-Iglesias, E. Vinot, P. Venet, and S. Pelissier, Electric vehicle range and battery lifetime: a trade-off, (32) (2019).
  34. S. Rao, Engineering optimization: Theory and practice,John Wiley & Sons (2019), 347-448.