بررسی عددی انتقال حرارت نانوسیال در میکروکانال‌های همگرا و واگرا به روش دوفازی ترکیبی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه رازی، کرمانشاه، ایران

چکیده

امروزه استفاده از نانوسیالات در میکروکانال‌ها برای خنک‌کاری قطعات میکروالکترونیکی کاربرد زیادی دارد. در این مطالعه، جریان و انتقال حرارت نانوسیال در یک میکروکانال همگرا و واگرا بررسی شده‌است. معادلات حاکم به روش المان محدود و مدل مخلوط دوفازی در نرم‌‌افزار کامسول مولتی فیزیکس حل شده‌اند. نتایج این شبیه‌سازی برای اعداد رینولدز (100-700) و غلظت‌های مختلف نانوذرات (02-0/0) برای دو میکروکانال واگرا و همگرا با شیب‌های مختلف (0 تا 0/05) به‌دست آمده‌است. همچنین، اثر دو نانوسیال مختلف آب-مس و اتیلن‌‌گلیکول-مس در شبیه‌سازی‌ها در نظر گرفته شده‌است. قطر نانوذرات برابر با 50 نانومتر و عرض متوسط میکروکانال‌ها 50 میکرون است. نتایج شامل عدد ناسلت و ضریب عملکرد برای حالات مختلف به‌دست آمده است. برای نانوسیال آب - مس با کسر حجمی 1 درصد در میکروکانال همگرا با شیب 3 درصد و رینولدز 100 نسبت به میکروکانال تخت برای میکروکانال همگرا حدود 1/6 برابر و برای میکروکانال واگرا 1/1 برابر افزایش می‌یابد. در این حالت ضریب عملکرد برای میکروکانال همگرا و واگرا به ترتیب 1/37 و 1/74 است. در همین شرایط برای نانوسیال اتیلن گلیکول - مس عدد ناسلت برای میکروکانال همگرا نسبت به میکروکانال تخت 1/22 برابر و برای واگرا 1/13 برابر می‌شود. در این حالت نیز ضریب عملکرد برای میکروکانال همگرا و واگرا به ترتیب 1/17 و 1/4 است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Heat Transfer of Nanofluids in Converging and Diverging Microchannels by Mixture Model

نویسندگان [English]

  • Farhad Rezvan Nejad
  • Javad Rostami
Department of Mechanical Engineering, Faculty of Engineering, Razi University, Kermanshah, Iran
چکیده [English]

Today, the use of nanofluids in microchannels is widely used for cooling microelectronic components. In this study, the flow and heat transfer of nanofluid in a converging and diverging microchannel has been investigated. The governing equations are solved by the finite element method and two-phase mixture model in COMSOL Multiphysics software. The results of this simulation were obtained for Reynolds numbers (100-700) and different concentrations of nanoparticles (0-0.02) for diverging and converging microchannels with different slopes (0-0.05). Also, the effect of two different nanofluids water-copper and ethylene-glycol-copper has been considered. The nanoparticles diameter is 50 nm. The results show that for water-copper nanofluid with a volume fraction of 1% in a converging microchannel with a slope of 3% and Reynolds 100, it increases by about 1.6 times for a converging microchannel and 1.1 times for a diverging microchannel compared to a flat microchannel. In this case, the performance coefficient for convergent and divergent microchannel is 1.37 and 1.74, respectively. In the same conditions, for ethylene glycol-copper nanofluid, the Nusselt number for converging microchannel becomes 1.22 times compared to flat microchannel and 1.13 times for divergent microchannel.  

کلیدواژه‌ها [English]

  • nanofluids
  • converging and diverging microchannel
  • two-phase mixture model
[1]        J. A. Eastman, U. Choi, S. Li, L. Thompson, and S. Lee, Enhanced thermal conductivity through the development of nanofluids, MRS Online Proceedings Library (OPL), 457 (1996) 3-11.
[2]        B. C. Pak and Y. I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer an International Journal, 11(2) (1998) 151-170.
[3]        S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, 125(4) (2003) 567-574.
[4]        N. Putra, W. Roetzel, and S. K. Das, Natural convection of nano-fluids,  Heat and mass transfer, 39 (8-9) (2003) 775-784.
[5]        S. Z. Heris, S. G. Etemad, and M. N. Esfahany, Experimental investigation of oxide nanofluids laminar flow convective heat transfer, International communications in heat and mass transfer, 33(4) (2006) 529-535.
[6]        S. Mirmasoumi and A. Behzadmehr, Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube, International journal of heat and fluid flow, 29(2) (2008) 557-566.
[7]        A. Akbarinia and R. Laur, Investigating the diameter of solid particles effects on a laminar nanofluid flow in a curved tube using a two phase approach, International Journal of Heat and Fluid Flow, 30(4) (2009) 706-714.
[8]        M. Faizan, S. Pati, and P. R. Randive, Implication of geometrical configuration on heat transfer enhancement in converging minichannel using nanofluid by two phase mixture model: A numerical analysis, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 235(2) (2021) 416-427.
[9]        D. B. Tuckerman and R. F. W. Pease, High-performance heat sinking for VLSI, IEEE Electron device letters, 2(5) (1981) 126-129.
[10]      H. Wu and P. Cheng, An experimental study of convective heat transfer in silicon microchannels with different surface conditions, International journal of heat and mass transfer, 46(14) (2003) 2547-2556.
[11]      M. Kohl, S. Abdel-Khalik, S. Jeter, and D. Sadowski, An experimental investigation of microchannel flow with internal pressure measurements, International journal of heat and mass transfer, 48(8) (2005) 1518-1533.
[12]      L. Chai, G. Xia, L. Wang, M. Zhou, and Z. Cui, Heat transfer enhancement in microchannel heat sinks with periodic expansion–constriction cross-sections, International Journal of Heat and Mass Transfer, 62 (2013) 741-751.
[13]      V. Duryodhan, A. Singh, S. G. Singh, and A. Agrawal, Convective heat transfer in diverging and converging microchannels, International Journal of Heat and Mass Transfer, 80 (2015) 424-438.
[14]      R. Vinoth and B. Sachuthananthan, Flow and heat transfer behavior of hybrid nanofluid through microchannel with two different channels, International Communications in Heat and Mass Transfer, 123 (2021) 105194.
[15]      A. Heidarian, R. Rafee, and M. S. Valipour, Effects of wall hydrophobicity on the thermohydraulic performance of the microchannels with nanofluids, International Communications in Heat and Mass Transfer, 117 (2020) 104758.
[16]      L. Yang and K. Du, Numerical simulation of nanofluid flow and heat transfer in a microchannel: the effect of changing the injection layout arrangement, International Journal of Mechanical Sciences, 172 (2020) 105415.
[17]      J. Rostami, A. Abbassi, and J. Harting, Heat transfer by nanofluids in wavy microchannels, Advanced Powder Technology, 29(4) (2018) 925-933.
[18]      J. Rostami, A. Abbassi, and M. Saffar-Avval, Numerical Heat Transfer by Nanofluids in a wavy walls Microchannel using Dispersion Method, Amirkabir Journal of Mechanical Engineering, 51(4) (2019) 121-130 (in Persian).
[19]      H. E. Patel, K. Anoop, T. Sundararajan, and S. K. Das, A micro-convection model for thermal conductivity of nanofluids, in International Heat Transfer Conference: Begel House Inc, 13 (2006).
[20]      M. Corcione, Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, Energy conversion and management, 52(1) (2011) 789-793.
[21]      A. Ghozatloo, M. Shariaty-Niasar, and A. Rashidi, Investigation of Heat Transfer Coefficient of Ethylene Glycol/Graphenenanofluid in Turbulent Flow Regime, International Journal of Nanoscience and Nanotechnology, 10(4) (2014) 237-244 (in Persian).
[22]      R. K. Ibrahim, M. Hayyan, M. A. AlSaadi, S. Ibrahim, A. Hayyan, and M. A. Hashim, Physical properties of ethylene glycol-based deep eutectic solvents, Journal of Molecular Liquids, 276 (2019) 794-800.
[23]      M. Sheikholeslami and D. Ganji, Nanofluid convective heat transfer using semi analytical and numerical approaches: a review, Journal of the Taiwan Institute of Chemical Engineers, 65 (2016) 43-77.
[24]      M. Sheikholeslami and D. Ganji, Free convection of Fe3O4-water nanofluid under the influence of an external magnetic source, Journal of Molecular Liquids, 229 (2017) 530-540.
[25]      D. A. Drew and R. T. Lahey Jr, Application of general constitutive principles to the derivation of multidimensional two-phase flow equations, International Journal of Multiphase Flow, 5(4) (1979) 243-264.
[26]      M. Ishii and K. Mishima, Two-fluid model and hydrodynamic constitutive relations, Nuclear Engineering and design, 82(2-3) (1984) 107-126.
[27]      M. Manninen, V. Taivassalo, and S. Kallio, On the mixture model for multiphase flow, 1996.
[28]      Z. Naumann and L. Schiller, A drag coefficient correlation, Z. Ver. Deutsch. Ing, 77(318) (1935) 323.
[29]      D. Wen and Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, International journal of heat and mass transfer, 47(24) (2004) 5181-5188.