مطالعه تجربی بر روی الکترواسپری مخلوط اتانول-آب با غلظت‌های مختلف با تصویربرداری پرسرعت

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

با توجه به کاربردهای گسترده و گوناگون الکترواسپری در جنبه‌های مختلف زندگی انسان‌ها، این موضوع همواره مورد توجه محققان بوده است. در این مقاله، به بررسی تجربی فرآیند الکترواسپری برای مخلوط اتانول-آب با سه غلظت مختلف %70، %96 و %9/99 پرداخته شده است. در این مقاله، ابتدا مودهای مختلف الکترواسپری برای اتانول %70، براساس تصاویر پرسرعت گرفته شده؛ تعریف و توضیح داده شده‌اند. در قسمت دوم مقاله، به محاسبه دقیق زاویه مخروط و قطر جت مخروط تیلور برای ابتدا و انتهای ناحیه پایدار الکترواسپری مخلوط اتانول-آب برای سه غلظت %70، %96 و %9/99، پرداخته شده است. برای این منظور، از تصویربرداری پرسرعت و پردازش تصاویر حاصل از آن استفاده شده است. درنهایت، زاویه مخروط و قطر جت خروجی از مخروط برای این سه سیال برای تمامی نقاط شروع و پایان ناحیه پایدار الکترواسپری در دبی‌های 1/0 تا 1 میلی‌لیتر بر ساعت محاسبه شده است. میانگین قطر جت برای تمامی نقاط ناحیه پایدار برای سیالات اتانول %70، %96 و %9/99، به ترتیب برابر 34/43، 33/78 و 31/70 میکرون می‌باشد. علاوه بر این، میانگین زاویه مخروط برای تمام نقاط ناحیه پایدار نیز برای سیالات اتانول %70، %96 و %9/99، به ترتیب برابر° 87/26،° 85/80 و° 84/13 می‌باشد. بنابراین، بیش‌ترین مقادیر زاویه مخروط و قطر جت مربوط به اتانول %70 و کم‌ترین آن مربوط به اتانول %9/99 می‌باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental investigation on the geometrical characterization of the cone-jet mode of electrospray of ethanol-water mixtures with different concentrations by high-speed imaging

نویسندگان [English]

  • Mahdi Bagherian Dehaghi
  • Mehrzad Shams
  • Pejman Naderi
Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
چکیده [English]

Due to the vast and diverse applications of electrospray in various aspects of human life, this subject has always been of interest to researchers. This article discusses the experimental investigation of the electrospray process for the ethanol-water mixture with three different concentrations of 70%, 96%, and 99.9%. In this article, different electrospray modes for 70% ethanol, based on high-speed images, are defined and explained. For three concentrations of 70%, 96%, and 99.9% of the ethanol-water mixture, the Taylor cone angle and the jet diameter at the onset and end of the stable electrospray region have been calculated. For this purpose, high-speed imaging and processing of the resulting images have been utilized. The cone angle and the diameter of the jet exiting from the cone for the three fluids have been calculated for all onset and end points of the stable electrospray region for flow rates ranging from 0.1 to 1 mL/h. The average jet diameter for all points of the stable region for 70%, 96%, and 99.9% ethanol fluids is equal to 34.43, 33.78, and 31.70 microns, respectively. Additionally, the average cone angle for all points of the stable region is 87.26°, 85.80°, and 84.13° for ethanol fluids, 70%, 96%, and 99.9%, respectively. Therefore, the highest cone angle and jet diameter values correspond to 70% ethanol, and the lowest values correspond to 99.9% ethanol.

کلیدواژه‌ها [English]

  • Jet diameter
  • cone angle
  • stable region
  • cone-jet mode
  • ethanol-water mixture
  • electrospray
[1] J. Rosell-Llompart, J. Grifoll, I.G. Loscertales, Electrosprays in the cone-jet mode: from Taylor cone formation to spray development, Journal of Aerosol Science, 125 (2018) 2-31.
[2] J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong, C.M. Whitehouse, Electrospray ionization for mass spectrometry of large biomolecules, Science, 246(4926) (1989) 64-71.
[3] V.A.G. Bailey, Electrostatic Spraying of Liquids., Research Studies Press LTD Taunton, Somerset/John Wiley & Sons Inc, New York 1988, Physik in unserer Zeit, 20(5) (1989) 160-160.
[4] A.M. Gañán-Calvo, J.M. Montanero, Revision of capillary cone-jet physics: Electrospray and flow focusing, Physical review E, 79(6) (2009) 066305.
[5] H. Ueda, K. Takeuchi, A. Kikuchi, Effect of the nozzle tip’s geometrical shape on electrospray deposition of organic thin films, Japanese Journal of Applied Physics, 56(4S) (2017) 04CL05.
[6] J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong, C.M. Whitehouse, Electrospray ionization–principles and practice, Mass Spectrometry Reviews, 9(1) (1990) 37-70.
[7] A.F. Mejia, P. He, D. Luo, M. Marquez, Z. Cheng, Uniform discotic wax particles via electrospray emulsification, Journal of colloid and interface science, 334(1) (2009) 22-28.
[8] T. Si, L. Zhang, G. Li, C.J. Roberts, X. Yin, R.X. Xu, Experimental design and instability analysis of coaxial electrospray process for microencapsulation of drugs and imaging agents, Journal of biomedical optics, 18(7) (2013) 075003.
[9] L. D'Addio, C. Carotenuto, W. Balachandran, A. Lancia, F. Di Natale, Experimental analysis on the capture of submicron particles (PM0. 5) by wet electrostatic scrubbing, Chemical Engineering Science, 106 (2014) 222-230.
[10] R. Coffee, Electrodynamic crop spraying, Outlook on Agriculture, 10(7) (1981) 350-356.
[11] M.R. Morad, A. Rajabi, M. Razavi, S.P. Sereshkeh, A very stable high throughput Taylor cone-jet in electrohydrodynamics, Scientific reports, 6(1) (2016) 1-10.
[12] A. Lee, H. Jin, H.-W. Dang, K.-H. Choi, K.H. Ahn, Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing, Langmuir, 29(44) (2013) 13630-13639.
[13] A. Ieta, J. Primrose, D. Quill, M. Chirita, Characterization of water–ethanol electrosprays, Journal of electrostatics, 69(5) (2011) 461-465.
[14] L.F. Velásquez-García, A.I. Akinwande, M. Martinez-Sanchez, A planar array of micro-fabricated electrospray emitters for thruster applications, Journal of Microelectromechanical Systems, 15(5) (2006) 1272-1280.
[15] A. Jaworek, Micro-and nanoparticle production by electrospraying, Powder technology, 176(1) (2007) 18-35.
[16] H. Xu, J. Wang, B. Li, K. Yu, J. Tian, D. Wang, W. Zhang, Effect of spray modes on electrospray cooling heat transfer of ethanol, Applied Thermal Engineering, 189 (2021) 116757.
[17] N. Bock, T.R. Dargaville, M.A. Woodruff, Electrospraying of polymers with therapeutic molecules: state of the art, Progress in polymer science, 37(11) (2012) 1510-1551.
[18] A. Jaworek, A.T. Sobczyk, Electrospraying route to nanotechnology: An overview, Journal of electrostatics, 66(3-4) (2008) 197-219.
[19] D.N. Nguyen, C. Clasen, G. Van den Mooter, Pharmaceutical applications of electrospraying, Journal of pharmaceutical sciences, 105(9) (2016) 2601-2620.
[20] K. Okuyama, I.W. Lenggoro, Preparation of nanoparticles via spray route, Chemical engineering science, 58(3-6) (2003) 537-547.
[21] J. Xie, J. Jiang, P. Davoodi, M.P. Srinivasan, C.-H. Wang, Electrohydrodynamic atomization: A two-decade effort to produce and process micro-/nanoparticulate materials, Chemical engineering science, 125 (2015) 32-57.
[22] C.U. Yurteri, R.P. Hartman, J.C. Marijnissen, Producing pharmaceutical particles via electrospraying with an emphasis on nano and nano structured particles-A review, KONA Powder and Particle Journal, 28 (2010) 91-115.
[23] F. Mottelay, On the loadstone and magnetic bodies, and on the great magnet the earth; a new physiology, demonstrated with many arguments and experiments—translation of Gilbert W, De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure, in, New York, NY: Wiley, 1893.
[24] J.A. Nollet, X. Part of a letter from Abbè Nollet, of the Royal Academy of Science at Paris, and FRS to Martin Folkes Esq; President of the same, concerning electricity, Philosophical Transactions of the Royal Society of London, 45(486) (1748) 187-194.
[25] L. Rayleigh, XX. On the equilibrium of liquid conducting masses charged with electricity, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 14(87) (1882) 184-186.
[26] J.W. Strutt, I. The influence of electricity on colliding water drops, Proceedings of the royal society of London, 28(190-195) (1879) 405-409.
[27] J.J. Thomson, XXVI. Rays of positive electricity, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21(122) (1911) 225-249.
[28] J. Zeleny, The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces, Physical Review, 3(2) (1914) 69.
[29] J. Zeleny, On the condition of instability of electrified drops, with applications to electrical discharge from liquid points, in:  Proc. Camb. Phil. Soc., 1915, pp. 71-83.
[30] J. Zeleny, Instability of electrified liquid surfaces, Physical review, 10(1) (1917) 1.
[31] Ransburg HP, Green HJ, inventors; Harper J Ransburg Co Inc, assignee. Apparatus for spray coating articles. United States patent US 2,247,963. 1941 Jul 1.
[32] G.I. Taylor, Disintegration of water drops in an electric field, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 280(1382) (1964) 383-397.
[33] M. Dole, L.L. Mack, R.L. Hines, R.C. Mobley, L.D. Ferguson, M.B. Alice, Molecular beams of macroions, The Journal of chemical physics, 49(5) (1968) 2240-2249.
[34] A. Ganan-Calvo, J. Davila, A. Barrero, Current and droplet size in the electrospraying of liquids. Scaling laws, Journal of aerosol science, 28(2) (1997) 249-275.
[35] A. Bailey, W. Balachandran, The disruption of electrically charged jets of viscous liquid, Journal of Electrostatics, 10 (1981) 99-105.
[36] A.G. Bailey, Electrostatic atomization of liquids, Science Progress (1933-),  (1974) 555-581.
[37] X. Chen, L. Jia, X. Yin, J. Cheng, J. Lu, Spraying modes in coaxial jet electrospray with outer driving liquid, Physics of fluids, 17(3) (2005) 032101.
[38] M. Cloupeau, B. Prunet-Foch, Electrostatic spraying of liquids in cone-jet mode, Journal of electrostatics, 22(2) (1989) 135-159.
[39] S. Jayasinghe, M. Edirisinghe, Effect of viscosity on the size of relics produced by electrostatic atomization, Journal of Aerosol Science, 33(10) (2002) 1379-1388.
[40] S. Jayasinghe, M. Edirisinghe, Obtaining fine droplet relics by electrostatic atomization of viscous liquids, Journal of materials science letters, 21(5) (2002) 371-373.
[41] B.K. Ku, S.S. Kim, Electrospray characteristics of highly viscous liquids, Journal of Aerosol Science, 33(10) (2002) 1361-1378.
[42] M. Mutoh, S. Kaieda, K. Kamimura, Convergence and disintegration of liquid jets induced by an electrostatic field, Journal of Applied Physics, 50(5) (1979) 3174-3179.
[43] G.I. Taylor, Electrically driven jets, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 313(1515) (1969) 453-475.
[44] D.-R. Chen, D.Y. Pui, Experimental investigation of scaling laws for electrospraying: dielectric constant effect, Aerosol science and technology, 27(3) (1997) 367-380.
[45] J.-U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair, D. kishore Mukhopadhyay, C.Y. Lee, M.S. Strano, A.G. Alleyne, J.G. Georgiadis, High-resolution electrohydrodynamic jet printing, Nature materials, 6(10) (2007) 782-789.
[46] D.P. Smith, The electrohydrodynamic atomization of liquids, IEEE transactions on industry applications, (3) (1986) 527-535.
[47] A. Yazdekhasti, A. Pishevar, A. Valipouri, Investigating the effect of electrical conductivity on electrospray modes, Experimental Thermal and Fluid Science, 100 (2019) 328-336.
[48] I. Hayati, A. Bailey, T.F. Tadros, Investigations into the mechanisms of electrohydrodynamic spraying of liquids: I. Effect of electric field and the environment on pendant drops and factors affecting the formation of stable jets and atomization, Journal of Colloid and Interface Science, 117(1) (1987) 205-221.
[49] B.K. Ku, S.S. Kim, Electrohydrodynamic spraying characteristics of glycerol solutions in vacuum, Journal of Electrostatics, 57(2) (2003) 109-128.
[50] Z. Wang, L. Xia, S. Zhan, Experimental study on electrohydrodynamics (EHD) spraying of ethanol with double-capillary, Applied Thermal Engineering, 120 (2017) 474-483.
[51] K. Sung, C.S. Lee, Factors influencing liquid breakup in electrohydrodynamic atomization, Journal of Applied Physics, 96(7) (2004) 3956-3961.
[52] A.M. Gañán-Calvo, The surface charge in electrospraying: its nature and its universal scaling laws, Journal of Aerosol Science, 30(7) (1999) 863-872.
[53] D. Grigoriev, M. Edirisinghe, X. Bao, Deposition of fine silicon carbide relics by electrostatic atomization of a polymeric precursor, Journal of materials research, 17(2) (2002) 487-491.
[54] C. Li, M. Chang, W. Yang, A. Madden, W. Deng, Ballpoint pen tips as robust cone-jet electrospray emitters, Journal of aerosol science, 77 (2014) 10-15.
[55] C. Ryan, K. Smith, M. Alexander, J. Stark, Effect of emitter geometry on flow rate sensitivity to voltage in cone jet mode electrospray, Journal of Physics D: Applied Physics, 42(15) (2009) 155504.
[56] S. Martin, A. Perea, P.L. Garcia-Ybarra, J.L. Castillo, Effect of the collector voltage on the stability of the cone-jet mode in electrohydrodynamic spraying, Journal of Aerosol Science, 46 (2012) 53-63.
[57] P. Naderi, M. Shams, H. Ghassemi, Investigation on the onset voltage and stability island of electrospray in the cone-jet mode using curved counter electrode, Journal of Electrostatics, 98 (2019) 1-10.
[58] M. Shams, P. Naderi, N. Ashgriz, EFFECT OF SEMICYLINDRICAL COUNTER ELECTRODES ON THE CONE-JET MODE OF ELECTROSPRAY, Atomization and Sprays, 30(1) (2020).
[59] R. Bocanegra, D. Galán, M. Márquez, I. Loscertales, A. Barrero, Multiple electrosprays emitted from an array of holes, Journal of Aerosol Science, 36(12) (2005) 1387-1399.
[60] J. Regele, M. Papac, M. Rickard, D. Dunn-Rankin, Effects of capillary spacing on EHD spraying from an array of cone jets, Journal of Aerosol Science, 33(11) (2002) 1471-1479.
[61] A. Ieta, D. Quill, T.E. Doyle, Onset characteristics of aqueous large gap electrosprays, IEEE Transactions on Industry Applications, 46(4) (2010) 1601-1605.
[62] A. Jaworek, A. Krupa, Main modes of electrohydrodynamic spraying of liquids, in:  Third International Conference on multiphase Flow, 1998, pp. 8-12.
[63] A. Jaworek, A. Krupa, Classification of the modes of EHD spraying, Journal of aerosol science, 30(7) (1999) 873-893.
[64] J.F. De La Mora, I.G. Loscertales, The current emitted by highly conducting Taylor cones, Journal of Fluid Mechanics, 260 (1994) 155-184.
[65] A. Gomez, K. Tang, Charge and fission of droplets in electrostatic sprays, Physics of Fluids, 6(1) (1994) 404-414.
[66] R. Hartman, D. Brunner, D. Camelot, J. Marijnissen, B. Scarlett, Electrohydrodynamic atomization in the cone–jet mode physical modeling of the liquid cone and jet, Journal of Aerosol science, 30(7) (1999) 823-849.
[67] C. Rosenkilde, A dielectric fluid drop in an electric field, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 312(1511) (1969) 473-494.
[68] P. Brazier‐Smith, Stability and shape of isolated and pairs of water drops in an electric field, The physics of Fluids, 14(1) (1971) 1-6.
[69] M.J. Miksis, Shape of a drop in an electric field, The Physics of Fluids, 24(11) (1981) 1967-1972.
[70] N. Dodgson, C. Sozou, The deformation of a liquid drop by an electric field, Zeitschrift für angewandte Mathematik und Physik ZAMP, 38(3) (1987) 424-432.
[71] J. Sherwood, Breakup of fluid droplets in electric and magnetic fields, Journal of Fluid Mechanics, 188 (1988) 133-146.
[72] J. Sherwood, The deformation of a fluid drop in an electric field: a slender-body analysis, Journal of Physics A: Mathematical and General, 24(17) (1991) 4047.
[73] F.K. Wohlhuter, O.A. Basaran, Shapes and stability of pendant and sessile dielectric drops in an electric field, Journal of Fluid Mechanics, 235 (1992) 481-510.
[74] J. Bacri, D. Salin, Instability of ferrofluid magnetic drops under magnetic field, Journal de Physique Lettres, 43(17) (1982) 649-654.
[75] J.-C. Bacri, D. Salin, Dynamics of the shape transition of a magnetic ferrofluid drop, Journal de Physique Lettres, 44(11) (1983) 415-420.
[76] A. Boudouvis, J. Puchalla, L. Scriven, Magnetohydrostatic equilibria of ferrofluid drops in external magnetic fields, Chemical Engineering Communications, 67(1) (1988) 129-144.
[77] O.A. Basaran, F.K. Wohlhuter, Effect of nonlinear polarization on shapes and stability of pendant and sessile drops in an electric (magnetic) field, Journal of Fluid Mechanics, 244 (1992) 1-16.
[78] O. Sero-Guillaume, D. Zouaoui, D. Bernardin, J. Brancher, The shape of a magnetic liquid drop, Journal of Fluid Mechanics, 241 (1992) 215-232.
[79] H. Li, T.C. Halsey, A. Lobkovsky, Singular shape of a fluid drop in an electric or magnetic field, EPL (Europhysics Letters), 27(8) (1994) 575.
[80] A. Jones, K. Thong, The production of charged monodisperse fuel droplets by electrical dispersion, Journal of Physics D: Applied Physics, 4(8) (1971) 1159.
[81] R. Krpoun, H.R. Shea, A method to determine the onset voltage of single and arrays of electrospray emitters, Journal of Applied Physics, 104(6) (2008) 064511.
[82] R. Krpoun, Micromachined electrospray thrusters for spacecraft propulsion, EPFL, 2009.
[83] A.M. Gañán-Calvo, N. Rebollo-Muñoz, J. Montanero, The minimum or natural rate of flow and droplet size ejected by Taylor cone–jets: physical symmetries and scaling laws, New Journal of Physics, 15(3) (2013) 033035.
[84] Gañán-Calvo, Alfonso M. "Cone-jet analytical extension of Taylor's electrostatic solution and the asymptotic universal scaling laws in electrospraying." Physical review letters 79, no. 2 (1997): 217.
[85] Gañán-Calvo, A. M., J. C. Lasheras, J. Dávila, and A. Barrero. "The electrostatic spray emitted from an electrified conical meniscus." Journal of aerosol science 25, no. 6 (1994): 1121-1142.
[86] Higuera, F. J. "Flow rate and electric current emitted by a Taylor cone." Journal of Fluid Mechanics 484 (2003): 303-327.
[87] Ganan-Calvo, Alfonso M. "On the general scaling theory for electrospraying." Journal of fluid mechanics 507 (2004): 203-212a.
[88] Gañán-Calvo AM, Montanero JM. Revision of capillary cone-jet physics: Electrospray and flow focusing. Physical review E. 2009 Jun 15;79(6):066305.
[89] Gañán-Calvo AM. The surface charge in electrospraying: its nature and its universal scaling laws. Journal of Aerosol Science. 1999 Aug 1;30(7):863-72.