[1]. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in: Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, New York, USA, 1995, pp. 99-105.
[2]. X.-j. Wang, D.-s. Zhu, S. yang, Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids, Chem. Phys. Lett., 470(1–3) (2009) 107-111.
[3]. D. Zhu, X. Li, N. Wang, X. Wang, J. Gao, H. Li, Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids, Current Applied Physics, 9(1) (2009) 131-139.
[4]. D.M. Sabatini, leading edge nanotechnology research developments, nova science publishers, 2007.
[5]. M. Venkataraman, The effect of colloidal stability on the heat transfer characteristics of nanosilica dispersed fluids, (2005), Electronic Theses and Dissertations. 630. https://stars.library.ucf.edu/etd/630
[6]. K.V. Wong, M.J. Castillo, Heat Transfer Mechanisms and Clustering in Nanofluids, Advances in Mechanical Engineering,2 (2010) 795478.
[7]. X. Li, D. Zhu, X. Wang, N. Wang, J. Gao, H. Li, Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids, Thermochimica Acta, 469(1-2) (2008) 98-103.
[8]. J.A. Eastman, S. Choi, S. Li, W. Yu, L. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78(6) (2001) 718-720.
[9]. Y. Ding, H. Alias, D. Wen, R.A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat Mass Transfer, 49(1) (2006) 240-250.
[10]. C.T. Wamkam, M.K. Opoku, H. Hong, P. Smith, Effects of p H on heat transfer nanofluids containing ZrO 2 and TiO 2 nanoparticles, Journal of Applied Physics, 109(2) (2011) 024305.
[11]. H.A. Mintsa, G. Roy, C.T. Nguyen, D. Doucet, New temperature dependent thermal conductivity data for water-based nanofluids, Int J Therm Sci, 48(2) (2009) 363-371.
[12]. S.M. Abdel-Samad, A.A. Fahmy, A.A. Massoud, A.M. Elbedwehy, Experimental investigation of TiO2-water nanofluids thermal conductivity synthesized by Sol-gel technique, Current Nanoscience, 13(6) (2017) 586-594.
[13]. S. Umar, F. Sulaiman, N. Abdullah, S.N. Mohamad, Investigation of the effect of pH adjustment on the stability of nanofluid, in: AIP Conference Proceedings, AIP Publishing LLC, 2018, pp. 020031.
[14]. J. Ji, X. Yao, J. Gao, W. Lu, W. Wang, D. Chu, Effect of surfactants and pH values on stability of γ-Al2O3 nanofluids, Chemical Physics Letters, 781 (2021) 138996.
[15]. P.K. Kanti, P. Sharma, K. Sharma, M. Maiya, The effect of pH on stability and thermal performance of graphene oxide and copper oxide hybrid nanofluids for heat transfer applications: Application of novel machine learning technique, Journal of Energy Chemistry, 82 (2023) 359-374.
[16]. H. Zhang, S. Qing, Y. Zhai, X. Zhang, A. Zhang, The changes induced by pH in TiO2/water nanofluids: Stability, thermophysical properties and thermal performance, Powder Technol., 377 (2021) 748-759.
[17]. M.H. Esfe, S. Esfandeh, D. Toghraie, Investigation of different training function efficiency in modeling thermal conductivity of TiO2/Water nanofluid using artificial neural network, Colloids Surf. Physicochem. Eng. Aspects, 653 (2022) 129811.
[18]. A. Mehralizadeh, S.R. Shabanian, G. Bakeri, Experimental and modeling study of heat transfer enhancement of TiO2/SiO2 hybrid nanofluids on modified surfaces in pool boiling process, The European Physical Journal Plus, 135(10) (2020) 796.
[19]. H. Eshgarf, A.A. Nadooshan, A. Raisi, M. Afrand, Experimental examination of the properties of Fe3O4/water nanofluid, and an estimation of a correlation using an artificial neural network, J. Mol. Liq., (2023) 121150.
[20]. W. Yu, H. Xie, L. Chen, Y. Li, Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid, Thermochim. Acta, 491(1-2) (2009) 92-96.
[21]. V.S. Raykar, A.K. Singh, Thermal and rheological behavior of acetylacetone stabilized ZnO nanofluids, Thermochim. Acta, 502(1-2) (2010) 60-65.
[22]. M. Pastoriza-Gallego, L. Lugo, D. Cabaleiro, J. Legido, M. Piñeiro, Thermophysical profile of ethylene glycol-based ZnO nanofluids, The Journal of Chemical Thermodynamics, 73 (2014) 23-30.
[23]. A. Singh, Synthesis, characterization, electrical and sensing properties of ZnO nanoparticles, Adv. Powder Technol., 21(6) (2010) 609-613.
[24]. M.H. Esfe, M. Afrand, A. Karimipour, W.-M. Yan, N. Sina, An experimental study on thermal conductivity of MgO nanoparticles suspended in a binary mixture of water and ethylene glycol, Int Commun Heat Mass, 67 (2015) 173-175.
[25]. O.A. Alawi, N.A.C. Sidik, H.W. Xian, T.H. Kean, S.N. Kazi, Thermal conductivity and viscosity models of metallic oxides nanofluids, Int. J. Heat Mass Transfer, 116 (2018) 1314-1325.
[26]. J. Jeong, C. Li, Y. Kwon, J. Lee, S.H. Kim, R. Yun, Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids, International journal of refrigeration, 36(8) (2013) 2233-2241.
[27]. H. Xie, W. Yu, W. Chen, MgO nanofluids: higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles, J. Exp. Nanosci. 5(5) (2010) 463-472.
[28]. G.-J. Lee, C.K. Kim, M.K. Lee, C.K. Rhee, S. Kim, C. Kim, Thermal conductivity enhancement of ZnO nanofluid using a one-step physical method, Thermochim. Acta, 542 (2012) 24-27.
[29]. H. Li, L. Wang, Y. He, Y. Hu, J. Zhu, B. Jiang, Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids, Appl. Therm. Eng., 88 (2015) 363-368.
[30]. M. Anish, T. Arunkumar, B. Kanimozhi, J. Jayaprabakar, N. Beemkumar, V. Jayaprakash, Experimental exploration and theoretical certainty of thermal conductivity and viscosity of MgO-therminol 55 nanofluid, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(4) (2019) 451-467.
[31]. S.H. Kim, S.R. Choi, D. Kim, Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation, ASME Journal of Heat and Mass Transfer,129(3) (2007) 298-307.
[32]. T.-P. Teng, Y.-H. Hung, T.-C. Teng, H.-E. Mo, H.-G. Hsu, The effect of alumina/water nanofluid particle size on thermal conductivity, Appl. Therm. Eng., 30 (14-15) (2010) 2213-2218.
[33]. M.O. Fatehah, H.A. Aziz, S. Stoll, Stability of ZnO nanoparticles in solution. Influence of pH, dissolution, aggregation and disaggregation effects, Journal of Colloid Science and Biotechnology, 3(1) (2014) 75-84.
[34]. B. Wang, X. Xiong, H. Ren, Z. Huang, Preparation of MgO nanocrystals and catalytic mechanism on phenol ozonation, Rsc Advances, 7(69) (2017) 43464-43473.
[35]. T. Yousefi, E. Shojaeizadeh, F. Veysi, S. Zinadini, An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector, Solar Energy, 86(2) (2012) 771-779.
[36]. K. Goudarzi, F. Nejati, E. Shojaeizadeh, S.A. Yousef-Abad, Experimental study on the effect of pH variation of nanofluids on the thermal efficiency of a solar collector with helical tube, Exp. Therm Fluid Sci., 60 (2015) 20-27.
[37]. E.J. Wasp, J.P. Kenny, R.L. Gandhi, Solid--liquid flow: slurry pipeline transportation.[Pumps, valves, mechanical equipment, economics], Ser. Bulk Mater. Handl.;(United States), 1(4) (1977).
[38]. S. Mukherjee, P.C. Mishra, P. Chaudhuri, Thermo-economic performance analysis of Al2O3-water nanofluids—an experimental investigation, J. Mol. Liq., 299 (2020) 112200.
[39]. S. Mukherjee, S.R. Panda, P.C. Mishra, P. Chaudhuri, Enhancing thermophysical characteristics and heat transfer potential of TiO2/water nanofluid, Int. J. Thermophys., 41(12) (2020) 1-33.