[1] S. Khalilzadeh, A. Hossein Nezhad, Utilization of waste heat of a high-capacity wind turbine in multi effect distillation desalination: Energy, exergy and thermoeconomic analysis, Desalination, 439 (2018) 119-137.
[2] M. Asim, M.K.H. Leung, Z. Shan, Y. Li, D.Y.C. Leung, M. Ni, Thermodynamic and Thermo-economic Analysis of Integrated Organic Rankine Cycle for Waste Heat Recovery from Vapor Compression Refrigeration Cycle, Energy Procedia, 143 (2017) 192-198.
[3] M.S. Salim, M.-H. Kim, Multi-objective thermo-economic optimization of a combined organic Rankine cycle and vapour compression refrigeration cycle, Energy Conversion and Management, 199 (2019) 112054.
[4] Y. Liang, A. McKeown, Z. Yu, S.F.K. Alshammari, Experimental study on a heat driven refrigeration system based on combined organic Rankine and vapour compression cycles, Energy Conversion and Management, 234 (2021) 113953.
[5] Z. Aghaziarati, A.H. Aghdam, Thermoeconomic analysis of a novel combined cooling, heating and power system based on solar organic Rankine cycle and cascade refrigeration cycle, Renewable Energy, 164 (2021) 1267-1283.
[6] B. Saleh, Energy and exergy analysis of an integrated organic Rankine cycle-vapor compression refrigeration system, Applied Thermal Engineering, 141 (2018) 697-710.
[7] A. Kilicarslan, M. Hosoz, Energy and irreversibility analysis of a cascade refrigeration system for various refrigerant couples, Energy Conversion and Management, 51(12) (2010) 2947-2954.
[8] A.M. Dubey, S. Kumar, G.D. Agrawal, Thermodynamic analysis of a transcritical CO2/propylene (R744–R1270) cascade system for cooling and heating applications, Energy Conversion and Management, 86 (2014) 774-783.
[9] L. Jiang, L. Wang, R. Wang, P. Gao, F. Song, Investigation on cascading cogeneration system of ORC (Organic Rankine Cycle) and CaCl2/BaCl2 two-stage adsorption freezer, Energy, 71 (2014) 377-387.
[10] A.J. Alazazmeh, E.M.A. Mokheimer, A. Khaliq, B.A. Qureshi, Performance Analysis of a Solar-Powered Multi-Effect Refrigeration System, Journal of Energy Resources Technology, 141(7) (2019).
[11] R. Lizarte, M.E. Palacios-Lorenzo, J.D. Marcos, Parametric study of a novel organic Rankine cycle combined with a cascade refrigeration cycle (ORC-CRS) using natural refrigerants, Applied Thermal Engineering, 127 (2017) 378-389.
[12] S. Khalilzadeh, A. Hossein Nezhad, F. Sarhaddi, Reducing the power consumption of cascade refrigeration cycle by a new integrated system using solar energy, Energy Conversion and Management, 200 (2019) 112083.
[13] K. Thu, Y.-D. Kim, G. Amy, W.G. Chun, K.C. Ng, A hybrid multi-effect distillation and adsorption cycle, Applied Energy, 104 (2013) 810-821.
[14] M. Amiralipour, R. Kouhikamali, Potential analysis and technical-economic optimization of conversion of steam power plant into combined water and power, Applied Thermal Engineering, 151 (2019) 191-198.
[15] Y. Wang, T. Morosuk, S. Yang, W. Cao, Development and evaluation of a novel combined absorption-based energy storage and thermal desalination system driven by unstable low-grade heat, Desalination, 520 (2021) 115348.
[16] L. Yang, H. Hu, X. Chen, Energy-consumption analysis of a confi guration of an absorption vapor compression coupled to MED in a dual-purpose power plant, Desalination and Water Treatment, 18(1-3) (2010) 38-45.
[17] M. Mokhtari, M.M. Keshtkar, Using waste energy of double-effect refrigeration cycle to produce potable water: energy and economic analysis: Utilisation de l’énergie résiduelle du cycle de réfrigération à double effet pour produire de l'eau potable: analyse énergétique et économique, International Journal of Refrigeration, 150 (2023) 215-240.
[19]
J. Park,
S. Lee, Desalination Technology in South Korea: A Comprehensive Review of Technology Trends and Future Outlook,
Membranes, 12(2022), 204-213.
[20] H. Jin, H. Athreya, A. Kalle, S. Wang, CFD modeling of crystallization fouling with CO2 desorption incorporated for a falling-film evaporator in thermal desalination,
Desalination, 553 (2023), 114-124.
[21] H. Hasan, S. Alsadaie, M. Obaidi, I. Mojtaba, Dynamic modelling and simulation of industrial scale multistage flash desalination process, Desalination, 553 (2023), 98-109.
[22] A.M. Elsafi, Exergy and exergoeconomic analysis of sustainable direct steam generation solar power plants, Energy Conversion and Management, 103 (2015) 338-347.
[23] H.T. El-Dessouky, H.M. Ettouney, Fundamentals of salt water desalination, Elsevier, 2002.
[24] J. Ahrendts, Reference states, Energy, 5(8-9) (1980) 666-677.
[25] N. Kahraman, Y.A. Cengel, Exergy analysis of a MSF distillation plant, Energy Conversion and Management, 46(15-16) (2005) 2625-2636.
[26] S. Khalilzadeh, A. Hossein Nezhad, Using waste heat of high capacity wind turbines in a novel combined heating, cooling, and power system, Journal of Cleaner Production, 276 (2020) 123221.
[27] S. Khalilzadeh, A. Hossein Nezhad, A. Romagnoli, B. Akhmetov, Investigating the effects of integrating an absorption heat transformer with a combined cooling, heating and power system: A thermodynamic and economic analysis, Energy Conversion and Management, 228 (2021) 113677.
[28] O. Rezayan, A. Behbahaninia, Thermoeconomic optimization and exergy analysis of CO2/NH3 cascade refrigeration systems, Energy, 36(2) (2011) 888-895.
[29] M.-J. Jeon, Experimental analysis of the R744/R404A cascade refrigeration system with internal heat exchanger. Part 1: Coefficient of performance characteristics, Energies, 14(18) (2021) 6003.
[30] U. Fisher, A. Aviram, A. Gendel, ASHDOD multi-effect low temperature desalination plant report on year of operation, Desalination, 55 (1985) 13-32.