[1] J. Li, M. Sun, Z. Wu, Design and fabrication of a low-cost silicone and water-based soft actuator with a high load-to-weight ratio, Soft Robotics, 8(4) (2021) 448-461.
[2] J. Walker, T. Zidek, C. Harbel, S. Yoon, F.S. Strickland, S. Kumar, M. Shin, Soft robotics: A review of recent developments of pneumatic soft actuators, in: Actuators, MDPI, 9 (1) (2020).
[3] H.B. Khaniki, M.H. Ghayesh, R. Chin, M. Amabili, Hyperelastic structures: A review on the mechanics and biomechanics, International Journal of Non-Linear Mechanics, 148 (2023) 104275.
[4] Y. Chen, Z. Yang, Y. Wen, A soft exoskeleton glove for hand bilateral training via surface EMG, Sensors, 21(2) (2021) 578.
[5] C. Tawk, G. Alici, Finite element modeling in the design process of 3D printed pneumatic soft actuators and sensors, Robotics, 9(3) (2020) 52.
[6] Z. Wang, P. Polygerinos, J.T. Overvelde, K.C. Galloway, K. Bertoldi, C.J. Walsh, Interaction forces of soft fiber reinforced bending actuators, IEEE/ASME Transactions on Mechatronics, 22(2) (2016) 717-727.
[7] Z. Liu, F. Wang, S. Liu, Y. Tian, D. Zhang, Modeling and analysis of soft pneumatic network bending actuators, IEEE/ASME Transactions on Mechatronics, 26(4) (2020) 2195-2203.
[8] S. Sridar, P.H. Nguyen, M. Zhu, Q.P. Lam, P. Polygerinos, Development of a soft-inflatable exosuit for knee rehabilitation, in: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2017, pp. 3722-3727.
[9] J. Fras, K. Althoefer, Soft fiber-reinforced pneumatic actuator design and fabrication: Towards robust, soft robotic systems. in: Towards Autonomous Robotic Systems: 20th Annual Conference, TAROS 2019, London, UK, July 3–5, 2019, ppp.103-114.
[10] G. Alici, T. Canty, R. Mutlu, W. Hu, V. Sencadas, Modeling and experimental evaluation of bending behavior of soft pneumatic actuators made of discrete actuation chambers, Soft robotics, 5(1) (2018) 24-35.
[11] W. Chen, C. Xiong, C. Liu, P. Li, Y. Chen, Fabrication and dynamic modeling of bidirectional bending soft actuator integrated with optical waveguide curvature sensor, Soft robotics, 6(4) (2019) 495-506.
[12] F. Aghaei, H. Bahador, High sensitivity metal-insulator-metal sensor based on ring-hexagonal resonator with a couple of square cavities connected, Physica Scripta, 97(6) (2022).
[13] J. Mersch, M. Bruns, A. Nocke, C. Cherif, G. Gerlach, High‐Displacement, Fiber‐Reinforced Shape Memory Alloy Soft Actuator with Integrated Sensors and Its Equivalent Network Model, Advanced Intelligent Systems, 3(7) (2021) 2000221.
[14] A. Kanan, M. Kaliske, Numerical modelling of electro‐viscoelasticity for fibre reinforced electro‐active polymers, PAMM, 20(1) (2021) e202000118.
[15] W. Sun, S. Schaffer, K. Dai, L. Yao, A. Feinberg, V. Webster-Wood, 3D printing hydrogel-based soft and biohybrid actuators: a mini-review on fabrication techniques, applications, and challenges, Frontiers in Robotics and AI, 8 (2021) 673533.
[16] B. Arifvianto, T.N. Iman, B.T. Prayoga, R. Dharmastiti, U.A. Salim, M. Mahardika, Tensile properties of the FFF-processed thermoplastic polyurethane (TPU) elastomer, The International Journal of Advanced Manufacturing Technology, 117(5) (2021) 1709-1719.
[17] M.S. Xavier, A.J. Fleming, Y.K. Yong, Finite element modeling of soft fluidic actuators: Overview and recent developments, Advanced Intelligent Systems, 3(2) (2021) 2000187.
[18] Y. Sun, Q. Zhang, X. Chen, H. Chen, An optimum design method of pneu-net actuators for trajectory matching utilizing a bending model and ga, Mathematical Problems in Engineering,2019(1) (2019).
[19] Z. Wang, Y. Torigoe, S. Hirai, A prestressed soft gripper: design, modeling, fabrication, and tests for food handling, IEEE Robotics and Automation Letters, 2(4) (2017) 1909-1916.
[20] C. Zheng, Design and simulation of a pneumatic actuator bending soft robotics based on 3D printing, Marshall University, (2018). Theses, Dissertations and Capstones. 1243.
[21] L. Treloar, The elasticity and related properties of rubbers, Reports on progress in physics, 36(7) (1973) 755.
[22] M. Destrade, G. Saccomandi, I. Sgura, Methodical fitting for mathematical models of rubber-like materials, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2198) (2017) 20160811.
[23] R.W. Ogden, Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 326(1567) (1972) 565-584.
[24] H.B. Khaniki, M.H. Ghayesh, R. Chin, M. Amabili, A review on the nonlinear dynamics of hyperelastic structures, Nonlinear Dynamics, 110(2) (2022) 963-994.
[25] R.S. Rivlin, Large elastic deformations of isotropic materials IV. Further developments of the general theory, Philosophical transactions of the royal society of London. Series A, Mathematical and physical sciences, 241(835) (1948) 379-397.
[26] O.H. Yeoh, Some forms of the strain energy function for rubber, Rubber Chemistry and technology, 66(5) (1993) 754-771.
[27] M. Rackl, Curve fitting for Ogden, Yeoh and polynomial models, in: ScilabTEC Conference, 2015, pp. 1-11.
[28] L. Papula, Vektoranalysis, Wahrscheinlichkeitsrechnung, Mathematische Statistik, Fehler-und Ausgleichsrechnung: mit 550 Abbildungen, zahlreichen Beispielen aus Naturwissenschaft und Technik sowie 295 Übungsaufgaben mit ausführlichen Lösungen, Springer Vieweg, 2016.
[29] P. Polygerinos, S. Lyne, Z. Wang, L.F. Nicolini, B. Mosadegh, G.M. Whitesides, C.J. Walsh, Towards a soft pneumatic glove for hand rehabilitation, in: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2013, pp. 1512-1517.
[30] S.H.K.B.a.J. Mahmud, Tensile Properties of Silicone Rubber via. Experimental and Analytical Method Adapting Hyperelastic Constitutive Models, Journal of Engineering and Applied Sciences, 12(6 SI) (2017) 7703 - 7707.