[1] N. Asadi, and A. Shafiei, Simulation of water jet cutting for granite by using smoothed particle hydrodynamics, Journal of Analytical and Numerical Methods in Mining Engineering, 10(23), (2020) 53-63. (in Persian).
[2] C. A. Fourness, C. M. Pearson, Paper metering cutting and reeling, US Patent 2,006,499, (1933).
[3] B.G. Schwacha, Liquid cutting of hard materials, US Patent 2,985,050, (1958) 1-4.
[4] D. R. Jenkins, T. Landis, Valkyrie: north american's mach 3 superbomber, Specialty Press, (2004).
[5] N.C. Franz, High velocity liquid jet, US Patent 3,524,367, (1968).
[6] X. Liu, Z. Liang, G. Wen, X. Yuan, Waterjet machining and research developments: a review, The International Journal of Advanced Manufacturing Technology, 102(5-8) (2019) 1257-1335.
[7] G. Aydin, S. Kaya, I. Karakurt, Effect of abrasive type on marble cutting performance of abrasive waterjet, Arabian Journal of Geosciences, 12(11) (2019).
[8] Y. Natarajan, P.K. Murugesan, M. Mohan, S.A. Liyakath Ali Khan, Abrasive Water Jet Machining process: A state of art of review, Journal of Manufacturing Processes, 49 (2020) 271-322.
[9] J. Zhao, G. Zhang, Y. Xu, R. Wang, W. Zhou, L. Han, Y. Zhou, Mechanism and effect of jet parameters on particle waterjet rock breaking, Powder Technology, 313 (2017) 231-244.
[10] J.A.R. Sumit Bhowmik, Abrasive water jet machining of composite materials, Advanced Manufacturing Technologies, (2017) 77-97.
[11] M. Hashish, A Modeling Study of Metal Cutting With Abrasive Waterjets, Journal of Engineering Materials and Technology, 106(1) (1984) 88-100.
[12] M. Hashish, A Model for Abrasive-Waterjet (AWJ) Machining, Journal of Engineering Materials and Technology, 111(2) (1989) 154-162.
[13] M. Ramulu, Dynamic photoelastic investigation on the mechanics of waterjet and abrasive waterjet machining, Optics and Lasers in Engineering, 19(1-3) (1993) 43-65.
[14] M. Hashish, D.E. Steele, D.H. Bothell, Machining with super-pressure (690 MPa) waterjets, International Journal of Machine Tools and Manufacture, 37(4) (1997) 465-479.
[15] A.W. Momber, R. Kovacevic, Test parameter analysis in abrasive water jet cutting of rocklike materials, International Journal of Rock Mechanics and Mining Sciences, 34(1) (1997) 17-25.
[16] A.W. Momber, The kinetic energy of wear particles generated by abrasive–water-jet erosion, Journal of Materials Processing Technology, 83(1-3) (1998) 121-126.
[17] M.K. Kulekci, Processes and apparatus developments in industrial waterjet applications, International Journal of Machine Tools and Manufacture, 42(12) (2002) 1297-1306.
[18] K. Maniadaki, T. Kestis, N. Bilalis, A. Antoniadis, A finite element-based model for pure waterjet process simulation, The International Journal of Advanced Manufacturing Technology, 31(9-10) (2006) 933-940.
[19] H. Shahverdi, M. Zohoor, S. M. Mousavi, Numerical simulation of abrasive water jet cutting process using the SPH and ALE methods, Int. J. Adv. Des. Manuf. Technol., 117 (2011) 43-50.
[20] G. Wenjun, W. Jianming, G. Na, Numerical simulation for abrasive water jet machining based on ALE algorithm, The International Journal of Advanced Manufacturing Technology, 53(1-4) (2010) 247-253.
[21] M. Gent, M. Menéndez, S. Torno, J. Toraño, A. Schenk, Experimental evaluation of the physical properties required of abrasives for optimizing waterjet cutting of ductile materials, Wear, 284-285 (2012) 43-51.
[22] C.-Y. Hsu, C.-C. Liang, T.-L. Teng, A.-T. Nguyen, A numerical study on high-speed water jet impact, Ocean Engineering, 72 (2013) 98-106.
[23] S.D. Lianhuan Guo, Xin Yang, Numerical simulation of abrasive water jet cutting chemical pipeline based on SPH coupled FEM, The Italian Association of Chemical Engineering 51 (2015) 73-78.
[24] F. Wang, R. Wang, W. Zhou, G. Chen, Numerical simulation and experimental verification of the rock damage field under particle water jet impacting, International Journal of Impact Engineering, 102 (2017) 169-179.
[25] X. Chen, J. Guan, S. Deng, Q. Liu, M. Chen, Features and mechanism of abrasive water jet cutting of Q345 steel, International Journal of Heat and Technology, 36(1) (2018) 81-87.
[26] M.M. Gregory Pasken, J. Ma, and Muhammad P. Jahan Numerical modeling of a pure water jet machining of Ti-6Al-4V and Al 6061-T6 using abaqus and smoothed particle hydrodynamics, ASME Int. Mech. Eng. Congr. Expo. Proc, 2 (2018) 1–6.
[27] L. Feng, G.R. Liu, Z. Li, X. Dong, M. Du, Study on the effects of abrasive particle shape on the cutting performance of Ti-6Al-4V materials based on the SPH method, The International Journal of Advanced Manufacturing Technology, 101(9-12) (2018) 3167-3182.
[28] S. Liu, Y. Cui, Y. Chen, C. Guo, Numerical research on rock breaking by abrasive water jet-pick under confining pressure, International Journal of Rock Mechanics and Mining Sciences, 120 (2019) 41-49.
[29] H.K. I. Ben Belgacem, L. Cheikh, E. M. Barhoumi, and W. Ben Salem, Comparison Between Two Numerical Methods SPH/FEM and CEL by Numerical Simulation of an Impacting Water Jet, Lect. Notes Mech. Eng., (2020) 50–60.
[30] D. Liu, C. Huang, J. Wang, H. Zhu, Material removal mechanisms of ceramics turned by abrasive waterjet (AWJ) using a novel approach, Ceramics International, 47(11) (2021) 15165-15172.
[31] R. Yu, X. Dong, Z. Li, M. Du, Q. Zhang, SPH-FEM simulation of concrete breaking process due to impact of high-speed water jet, AIP Advances, 11(4) (2021).
[32] A.R. Hossein Mehmannavaz, Gholamhossain Liaghat, Hamid fazeli, Mohsen Rouhbakhsh, Numerical analysis of shaped charge jet penetration into discrete concrete targets using Ls-dyna and Ansys-Autodyn, Amirkabir J. Mech. Eng, (53(Special Issue 6)) (2021) 939-942. (in Persian)
[33] B. Vasudevan, Y. Natarajan, R. Pavan Kumar, K. Umesh Chandra, D. Sikder, Simulation of AWJ drilling process using the FEA coupled SPH models: A preliminary study, Materials Today: Proceedings, 62 (2022) 6022-6028.
[34] Z. Wang, X. Lei, W. Zhou, Y. Wang, J. Cao, L. Li, G. Chen, C. Wang, Numerical simulation of the damage process of rock containing cracks by impacts of steel-particle water jet, Powder Technology, 422 (2023).
[35] H. Zhao, H. Jiang, S. Warisawa, H. Li, Numerical study of abrasive water jet rotational slits in hard rock using a coupled SPH-FEM method, Powder Technology, 426 (2023).
[36] S. Budaraju, Numerical modelling of the abrasive waterjet (AWJ) cutting process using smoothed particle hydrodynamics (SPH) method, University of British Columbia Library, (2019).
[37] L. Vinet, A. Zhedanov, A ‘missing’ family of classical orthogonal polynomials, Journal of Physics A: Mathematical and Theoretical, 44(8) (2011).
[38] S.S. Rao, The finite element method in engineering, Elsevier, (2011).
[39] C.A. Dutra Fraga Filho, Smoothed particle hydrodynamics: fundamentals and basic applications in continuum Mechanics, Springer, (2019).
[40] R. Vignjevic, Review of development of the smooth particle hydrodynamics (SPH) method, Crashworthiness, Impact and Structural Mechanics (CISM), (2009).
[41] T. De Vuyst, R. Vignjevic, J.C. Campbell, Coupling between meshless and finite element methods, International Journal of Impact Engineering, 31(8) (2005) 1054-1064.
[42] L.E. Schwer, Y.D. Murray, A three‐invariant smooth cap model with mixed hardening, International Journal for Numerical and Analytical Methods in Geomechanics, 18(10) (2005) 657-688.
[43] L.E. Schwer, Viscoplastic augmentation of the smooth cap model, Nuclear Engineering and Design, 150(2-3) (1994) 215-223.
[44] Y.D. Murray, B.A. Lewis, Numerical simulation of damage in concrete. Technical Report Submitted to the Defense Nuclear Agency by APTEK, (1995).
[45] L.E. Schwer, Demonstration of the continuous surface cap model with damage: concrete unconfined compression test calibration, Ls-dyna Geomaterial Modeling Short Course Notes, (2001).
[46] L.E. Schwer, Y.D. Murray, Continuous surface cap model for geomaterial modeling: A new ls-dyna material type, in: Proceedings of Seventh international Ls-dyna User Conference, (2002).
[47] H. Jiang, J. Zhao, Calibration of the continuous surface cap model for concrete, Finite Elements in Analysis and Design, 97 (2015) 1-19.
[48] Livermore Software Technology Corporation (LSTC), Material models in Ls-dyna, Ls-dyna Keyword User’s Manual Vol II, (2012).
[49] Livermore Software Technology Corporation (LSTC), Contact modeling in Ls-dyna, Ls-dyna Keyword User’s Manual Vol I, (2012).