[1] W. Thomas, E. Nicholas, J. Needham, M. Murch, P. Templesmith, C. Dawes, GB Patent application no. 9125978.8, International patent application no. PCT/GB92/02203, (1991).
[2] C. Dawes, Friction Stir Joining of Aluminium Alloy, Welding Jounal, 36 (1995) 41-45.
[3] R.S. Mishra, Z. Ma, Friction stir welding and processing, Materials science and engineering: R: reports, 50(1-2) (2005) 1-78.
[4] C. Rhodes, M. Mahoney, W. Bingel, R. Spurling, C. Bampton, Effects of friction stir welding on microstructure of 7075 aluminum, Scripta materialia, 36(1) (1997) 69-75.
[5] G. Liu, L. Murr, C. Niou, J. McClure, F. Vega, Microstructural aspects of the friction-stir welding of 6061-T6 aluminum, Scripta materialia, 37(3) (1997) 355-361.
[6] S. Benavides, Y. Li, L. Murr, D. Brown, J. McClure, Low-temperature friction-stir welding of 2024 aluminum, Scripta materialia, 41(8) (1999) 809-815.
[7] K. Jata, S.L. Semiatin, Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys, Scripta materialia, 43(8) (2000) 743-749.
[8] G. Buffa, A. Ducato, L. Fratini, Numerical procedure for residual stresses prediction in friction stir welding, Finite elements in analysis and design, 47(4) (2011) 470-476.
[9] M. Song, R. Kovacevic, Thermal modeling of friction stir welding in a moving coordinate system and its validation, International Journal of machine tools and manufacture, 43(6) (2003) 605-615.
[10] Y.J. Chao, X. Qi, W. Tang, Heat transfer in friction stir welding—experimental and numerical studies, J. Manuf. Sci. Eng., 125(1) (2003) 138-145.
[11] S. Mandal, J. Rice, A. Elmustafa, Experimental and numerical investigation of the plunge stage in friction stir welding, Journal of materials processing technology, 203(1-3) (2008) 411-419.
[12] G. Buffa, L. Fratini, S. Pasta, Residual stresses in friction stir welding: numerical simulation and experimental verification, Powder Diffraction, 23(2) (2008) 182-182.
[13] G. Buffa, G. Campanile, L. Fratini, A. Prisco, Friction stir welding of lap joints: Influence of process parameters on the metallurgical and mechanical properties, Materials Science and Engineering: A, 519(1-2) (2009) 19-26.
[14] S. Sadeghi, M.A. Najafabadi, Y. Javadi, M. Mohammadisefat, Using ultrasonic waves and finite element method to evaluate through-thickness residual stresses distribution in the friction stir welding of aluminum plates, Materials & Design (1980-2015), 52 (2013) 870-880.
[15] G. Buffa, L. Fratini, M. Schneider, M. Merklein, Micro and macro mechanical characterization of friction stir welded Ti–6Al–4V lap joints through experiments and numerical simulation, Journal of Materials Processing Technology, 213(12) (2013) 2312-2322.
[16] B. Sadeghian, M. Ataapour, A. Taherizadeh, Thermal Simulation of Friction Stir Welding in 304 Stainless Steel to 5083 Aluminum Dissimilar Joint, Journal of Computational Methods in Engineering, 36(2) (2022) 101-117 (In Persian).
[17] B. Mohammadi Landi, H. Kavoosi Balutaki, I. Golshokouh, M. Goudarzi Khoigani, Investigating the effect of friction stir welding parameters on the mechanical and metallurgical properties of the weld zone Aluminum-based composite materials, Research in engineering sciences and nanomaterials, 1(3) (2022) 46-55 (In Persian).
[18] M. Ellis, Joining of aluminium based metal matrix composites, International Materials Reviews, 41(2) (1996) 41-58.
[19] L. Ceschini, I. Boromei, G. Minak, A. Morri, F. Tarterini, Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.% Al2O3p composite, Composites science and technology, 67(3-4) (2007) 605-615.
[20] G.-F. Zhang, S. Wei, J. Zhang, Z.-X. Wei, J.-X. Zhang, Effects of shoulder on interfacial bonding during friction stir lap welding of aluminum thin sheets using tool without pin, Transactions of Nonferrous Metals Society of China, 20(12) (2010) 2223-2228.
[21] A. Byung-Wook, C. Don-Hyun, K. Yong-Hwan, J. Seung-Boo, Fabrication of SiCp/AA5083 composite via friction stir welding, Transactions of Nonferrous Metals Society of China, 22 (2012) s634-s638.
[22] M. Bahrami, M.K.B. Givi, K. Dehghani, N. Parvin, On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique, Materials & Design, 53 (2014) 519-527.
[23] M. Bahrami, K. Dehghani, M.K.B. Givi, A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique, Materials & Design, 53 (2014) 217-225.
[24] M. Bahrami, N. Helmi, K. Dehghani, M.K.B. Givi, Exploring the effects of SiC reinforcement incorporation on mechanical properties of friction stir welded 7075 aluminum alloy: fatigue life, impact energy, tensile strength, Materials Science and Engineering: A, 595 (2014) 173-178.
[25] H. Samarikhalaj, A. Nikbakht, M. Sadighi, S. Sheikhan, Investigating the Shear Strength of Friction Stir Lap Welded 7075 Aluminum Alloy, Amirkabir Journal of Mechanical Engineering, 49(4) (2018) 863-874 (In Persian).
[26] A. Rabiezadeh, A. Afsari, Effect of nanoparticles addition on dissimilar joining of aluminum alloys by friction stir welding, Journal of Welding Science and Technology of Iran, 4(2) (2019) 23-34 (In Persian).
[27] S. Suresh, K. Venkatesan, E. Natarajan, S. Rajesh, Performance analysis of nano silicon carbide reinforced swept friction stir spot weld joint in AA6061-T6 alloy, Silicon, 13(10) (2021) 3399-3412.
[28] M. Bahrami, An investigation the effect of SiC particles on mechanical properties in friction stir butt joint AA7075, Amirkabir Univesity, Iran, 2012 (In Persian).
[29] M. Miles, T. Nelson, B. Decker, Formability and strength of friction-stir-welded aluminum sheets, Metallurgical and Materials Transactions A, 35 (2004) 3461-3468.
[30] S. Sadeghi, An investigation on residual stresses distribution in the friction stir welding of aluminum plates with ultrasonic waves, Amirkabir University Iran, 2013 (In Persian).
[31] S. Babu, G.J. Ram, P. Venkitakrishnan, G.M. Reddy, K.P. Rao, Microstructure and mechanical properties of friction stir lap welded aluminum alloy AA2014, Journal of Materials Science & Technology, 28(5) (2012) 414-426.
[32] G. Buffa, J. Hua, R. Shivpuri, L. Fratini, A continuum based fem model for friction stir welding—model development, Materials Science and Engineering: A, 419(1-2) (2006) 389-396.
[33] H. Toyserkani, Structure, Properties and Materials Engineering, in: Principles of Materials Science (Structure, Properties and Materials Engineering), Isfahan University of Technology Press, Iran, 2008, pp. 233- 342 (In Persian).
[34] R.K. Roy, Design of experiments using the Taguchi approach: 16 steps to product and process improvement, John Wiley & Sons, 2001.
[35] D.C. Montgomery, Design and analysis of experiments, John wiley & sons, 2017.
[36] K. Deplus, A. Simar, W.V. Haver, B.d. Meester, Residual stresses in aluminium alloy friction stir welds, The International Journal of Advanced Manufacturing Technology, 56 (2011) 493-504.
[37] J. Zapata, M. Toro, D. López, Residual stresses in friction stir dissimilar welding of aluminum alloys, Journal of Materials Processing Technology, 229 (2016) 121-127.
[38] A.K. Kadian, P. Biswas, Effect of tool pin profile on the material flow characteristics of AA6061, Journal of Manufacturing Processes, 26 (2017) 382-392.
[39] K.S.A. Kumar, S.M. Murigendrappa, H. Kumar, Experimental investigation on effects of varying volume fractions of SiC nanoparticle reinforcement on microstructure and mechanical properties in friction-stir-welded dissimilar joints of AA2024-T351 and AA7075-T651, Journal of Materials Research, 34(7) (2019) 1229-1247.