[1] T.I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control, John Wiley & Sons, 2011.
[2] A. Kabanov, V. Kramar, I. Ermakov, Design and Modeling of an Experimental ROV with Six Degrees of Freedom, Drones, 5(4) (2021) 113.
[3] C.-J. Wu, 6-dof Modelling and Control of a Remotely Operated Vehicle, Master thesis, Flinders University, , 2018.
[4] M. Bjerkeng, T. Kirkhus, W. Caharija, J. T. Thielemann, H. B. Amundsen, S. Johan Ohrem, E. Ingar Grøtli, ROV navigation in a fish cage with laser-camera triangulation, Journal of Marine Science and Engineering, 9(1) (2021) 79.
[5] C. Long, X. Qin, Y. Bian, M. Hu, Trajectory tracking control of ROVs considering external disturbances and measurement noises using ESKF-based MPC, Ocean Engineering, 241 (2021) 109991.
[6] R.T.S. da Rosa, G.B. Zaffari, P.J.D. de Oliveira Evald, P.L.J. Drews, S.S. da Costa Botelho, Towards Comparison of Kalman Filter Methods for Localisation in Underwater Environments, in: 2017 Latin American Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics (SBR), IEEE, 2017, pp. 1-6.
[7] X. Fan, S.S. Yu, T.K. Chau, T. Fernando, C. Townsend, H.H. Iu, Central Difference Kalman Filter Approach Based Decentralized Dynamic States Estimator for DFIG Wind Turbines in Power Systems, in: 2019 9th International Conference on Power and Energy Systems (ICPES), IEEE, 2019, pp. 1-5.
[8] K.M. Alzahrani, An Underwater Vehicle Navigation System Using Acoustic and Inertial Sensors, Embry-Riddle Aeronautical University 2018.
[9] F. Deng, C. Levi, H. Yin, M. Duan, Identification of an Autonomous Underwater Vehicle Hydrodynamic Model Using Three Kalman Filters, Journal of Ocean Engineering, 229 (2021) 108962.
[10] M.T. Sabet, H.M. Daniali, A. Fathi, E. Alizadeh, Identification of an Autonomous Underwater Vehicle Hydrodynamic Model Using the Extended, Cubature, and Transformed Unscented Kalman Filter, IEEE Journal of Oceanic Engineering, 43(2) (2017) 457-467.
[11] O. Oruc, M.-W. Thein, B. Mu, Nonlinear System Identification and Motion Control Design for an Unmanned Underwater Vehicle, in: OCEANS 2022-Chennai, IEEE, 2022, pp. 1-10.
[12] S. Balasubramanian, A. Rajput, R.W. Hascaryo, C. Rastogi, W.R. Norris, Comparison of Dynamic and Kinematic Model Driven Extended Kalman Filters (EKF) for the Localization of Autonomous Underwater Vehicles, arXiv preprint arXiv:2105.12309, (2021).
[13] Q. Li, Y. Cao, B. Li, D.M. Ingram, A. Kiprakis, Numerical Modelling and Experimental Testing of the Hydrodynamic Characteristics for an Open-frame Remotely Operated Vehicle, Journal of Marine Science and Engineering, 8(9) (2020) 688.
[14] P.F. Florez, R. Huamani R, E. Huanca, W. Nina, J.P.J. Avila, Design and Experimental Identification of the Main Hydrodynamic Parameters for an Open-Frame ROV to the Peruvian Scallops Stock Assessment, in: Offshore Technology Conference Brasil, OTC, 2023, pp. D031S034R004.
[15] M. Khodarahmi, V. Maihami, A Review on Kalman Filter Models, Archives of Computational Methods in Engineering, 30(1) (2023) 727-747.
[16] F. Ahmed, X. Xiang, C. Jiang, G. Xiang, S. Yang, Survey on traditional and AI based estimation techniques for hydrodynamic coefficients of autonomous underwater vehicle, Ocean Engineering, 268 (2023) 113300.
[17] https://bluerobotics.com/store/thrusters/t100-t200-thrusters/t200-thruster-r2-rp.
[18] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, John Wiley & Sons, 2006.
[19] L.A. Scardua, J.J. Da Cruz, Complete Offline Tuning of the Unscented Kalman Filter, Journal of Automatica, 80 (2017) 54-61.
[20] S. Julier, J. Uhlmann, H.F. Durrant-Whyte, A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators, IEEE Transactions on automatic control, 45(3) (2000) 477-482.