تخمین ضرایب پسای خطی و فشاری یک ربات زیردریایی با استفاده از فیلترهای کالمن غیرخطی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه یزد، یزد، ایران

چکیده

تعیین موقعیت ربات‌های زیردریایی با استفاده از مدل سینتیکی آن‌ها  از اهمیت بالایی در ناوبری این ربات‌ها برخوردار است. ناوبری مبتنی بر مدل  سینتیکی، یک ابزار کمکی برای الگوریتم‌های رایج ناوبری که در آن‌ها  از مدل‌های سینماتیکی استفاده می‌شود، می‌باشد. اهمیت استفاده از مدل‌های سینتیکی در ناوبری وسایل زیردریایی زمانی دوچندان می‌شود که به واسطه شرایط زیر آب، امکان دسترسی به داده‌های سیستم موقعیت‌یاب جهانی و امواج رادیویی وجود نداشته و ناوبری کور با استفاده از داده‌های حسگرهایی نظیر واحد اندازه‌گیری اینرسی و سرعت‌سنج‌های داپلری و بر اساس مدل‌های سینتیکی انجام می‌گیرد. به منظور پیاده‌سازی الگوریتم ناوبری مبتنی بر مدل سینتیکی، به یک مدل دقیق برای وسایل زیردریایی نیاز است که ضرایب پسای خطی و فشاری، از جمله مهمترین ضرایب تاثیرگذار در دقت آن هستند. در این مقاله، ضرایب پسای خطی و فشاری برای یک نمونه ربات زیردریایی هدایت از راه دور با استفاده از فیلترهای کالمن غیرخطی توسعه‌یافته و بدون بو تخمین زده می‌شوند. برای این منظور، یک مدل شش درجه آزادی از ربات زیردریایی برای شبیه‌سازی حرکت آن، مورد استفاده قرار می‌گیرد. سپس ورودی و خروجی‌های مدل شبیه‌سازی شده، به الگوریتم‌های تخمین داده می‌شوند تا ضرایب پسای خطی و فشاری ربات شناسایی شوند. مقایسه مقادیر شناسایی شده برای ضرایب هیدرودینامیک نشان می‌‌دهد که فیلتر کالمن بدون بو این ضرایب را با دقت بیشتری نسبت به فیلتر کالمن توسعه یافته تخمین می‌‌زند. همچنین، مقایسه نتایج شبیه‌سازی مانورهای ربات با استفاده از ضرایب شناسایی شده و ضرایب واقعی و مقایسه مسیرهای حرکتی به دست آمده، نشان می‌دهد که مسیر حاصل از ضرایب شناسایی شده توسط فیلترکالمن بدون بو،  به مسیر واقعی حرکت وسیله نزدیک‌‌تر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of Linear and Pressure Drag Coefficients of an Underwater Robot Using Nonlinear Kalman Filters

نویسندگان [English]

  • Mohammad Ghazanfari
  • Seyed Mohammad Bozorg
Dept. of Mechanical Eng., Yazd University
چکیده [English]

Using kinetic models for the navigation of underwater robots is an important issue that has recently attracted the attention of many researchers. They are used as an auxiliary tool alongside the common navigation algorithms that use the kinematic models of the robots. Their use in underwater navigation is more crucial as the GPS and radio signals are not available in underwater environments and navigation algorithms mainly rely on the kinematic models used in a dead-reckoning configuration, where IMU and/or DVL data are used. To use a kinetic model for the navigation of an underwater vehicle, it is required to have accurate values of its hydrodynamic coefficients, where the linear and pressure drag coefficients are among the most crucial parameters to be identified. In this paper, the drag coefficients of a sample remotely operated vehicle (ROV) are estimated using an Extended Kalman filter (EKF) and an Unscented Kalman filter (UKF). For this purpose, a six DOF model of the underwater vehicle is used to simulate its motion. Then, the inputs and outputs of the simulated model are imported into the estimation algorithms to identify the drag coefficients of the robot. The simulation results show that the UKF identifies the hydrodynamic coefficients more accurately than EKF, using the same model and measurement noises. Also, by comparing the simulated maneuvers of the robot using the identified coefficients and the exact coefficients of the robot, it is observed that the coefficients identified by UKF lead to more accurate trajectories as compared to the coefficients identified by EKF.

کلیدواژه‌ها [English]

  • Parameters Estimation
  • Linear and Pressure Drag Coefficients
  • Unscented Kalman Filter
  • Extended Kalman Filter
  • Remotely Operated Vehicle
[1] T.I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control, John Wiley & Sons, 2011.
[2] A. Kabanov, V. Kramar, I. Ermakov, Design and Modeling of an Experimental ROV with Six Degrees of Freedom, Drones, 5(4) (2021) 113.
[3] C.-J. Wu, 6-dof Modelling and Control of a Remotely Operated Vehicle, Master thesis, Flinders University, , 2018.
[4] M. Bjerkeng, T. Kirkhus, W. Caharija, J. T. Thielemann, H. B. Amundsen, S. Johan Ohrem, E. Ingar Grøtli, ROV navigation in a fish cage with laser-camera triangulation, Journal of Marine Science and Engineering, 9(1) (2021) 79.
[5] C. Long, X. Qin, Y. Bian, M. Hu, Trajectory tracking control of ROVs considering external disturbances and measurement noises using ESKF-based MPC, Ocean Engineering, 241 (2021) 109991.
[6] R.T.S. da Rosa, G.B. Zaffari, P.J.D. de Oliveira Evald, P.L.J. Drews, S.S. da Costa Botelho, Towards Comparison of Kalman Filter Methods for Localisation in Underwater Environments, in:  2017 Latin American Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics (SBR), IEEE, 2017, pp. 1-6.
[7] X. Fan, S.S. Yu, T.K. Chau, T. Fernando, C. Townsend, H.H. Iu, Central Difference Kalman Filter Approach Based Decentralized Dynamic States Estimator for DFIG Wind Turbines in Power Systems, in:  2019 9th International Conference on Power and Energy Systems (ICPES), IEEE, 2019, pp. 1-5.
[8] K.M. Alzahrani, An Underwater Vehicle Navigation System Using Acoustic and Inertial Sensors, Embry-Riddle Aeronautical University 2018.
[9] F. Deng, C. Levi, H. Yin, M. Duan, Identification of an Autonomous Underwater Vehicle Hydrodynamic Model Using Three Kalman Filters, Journal of Ocean Engineering, 229 (2021) 108962.
[10] M.T. Sabet, H.M. Daniali, A. Fathi, E. Alizadeh, Identification of an Autonomous Underwater Vehicle Hydrodynamic Model Using the Extended, Cubature, and Transformed Unscented Kalman Filter, IEEE Journal of Oceanic Engineering, 43(2) (2017) 457-467.
[11] O. Oruc, M.-W. Thein, B. Mu, Nonlinear System Identification and Motion Control Design for an Unmanned Underwater Vehicle, in:  OCEANS 2022-Chennai, IEEE, 2022, pp. 1-10.
[12] S. Balasubramanian, A. Rajput, R.W. Hascaryo, C. Rastogi, W.R. Norris, Comparison of Dynamic and Kinematic Model Driven Extended Kalman Filters (EKF) for the Localization of Autonomous Underwater Vehicles, arXiv preprint arXiv:2105.12309,  (2021).
[13] Q. Li, Y. Cao, B. Li, D.M. Ingram, A. Kiprakis, Numerical Modelling and Experimental Testing of the Hydrodynamic Characteristics for an Open-frame Remotely Operated Vehicle, Journal of Marine Science and Engineering, 8(9) (2020) 688.
[14] P.F. Florez, R. Huamani R, E. Huanca, W. Nina, J.P.J. Avila, Design and Experimental Identification of the Main Hydrodynamic Parameters for an Open-Frame ROV to the Peruvian Scallops Stock Assessment, in:  Offshore Technology Conference Brasil, OTC, 2023, pp. D031S034R004.
[15] M. Khodarahmi, V. Maihami, A Review on Kalman Filter Models, Archives of Computational Methods in Engineering, 30(1) (2023) 727-747.
[16] F. Ahmed, X. Xiang, C. Jiang, G. Xiang, S. Yang, Survey on traditional and AI based estimation techniques for hydrodynamic coefficients of autonomous underwater vehicle, Ocean Engineering, 268 (2023) 113300.
[17] https://bluerobotics.com/store/thrusters/t100-t200-thrusters/t200-thruster-r2-rp.
[18] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, John Wiley & Sons, 2006.
[19] L.A. Scardua, J.J. Da Cruz, Complete Offline Tuning of the Unscented Kalman Filter, Journal of Automatica, 80 (2017) 54-61.
[20] S. Julier, J. Uhlmann, H.F. Durrant-Whyte, A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators, IEEE Transactions on automatic control, 45(3) (2000) 477-482.