[1] M. Alvarez-Rodriguez, M. Alonso-Martinez, I. Suarez-Ramon, P. José García-Nieto, Numerical model for determining the effective heat capacity of macroencapsulated PCM for building applications, Applied Thermal Engineering, 242 (2024) 122478.
[2] B.E. Jebasingh, A.V. Arasu, A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications, Energy Storage Materials, 24 (2020) 52-74.
[3] T. Pirasaci, A. Sunol, Potential of phase change materials (PCM) for building thermal performance enhancement: PCM-composite aggregate application throughout Turkey, Energy, 292 (2024) 130589.
[4] A. Refahi, A. Rostami, M. Amani, Implementation of a double layer of PCM integrated into the building exterior walls for reducing annual energy consumption: Effect of PCM wallboards position, Journal of Energy Storage, 82 (2024) 110556.
[5] Z. Hu, W. Li, C. Yang, H. Huang, Y. Guo, F. Ge, Y. Zhang, Thermal performance of an active casing pipe macro-encapsulated PCM wall for space cooling and heating of residential building in hot summer and cold winter region in China, Construction and Building Materials, 422 (2024) 135831.
[6] H. Kitagawa, T. Asawa, M.A. Del Rio, T. Kubota, A.R. Trihamdani, Thermal energy simulation of PCM-based radiant floor cooling systems for naturally ventilated buildings in a hot and humid climate, Building and Environment, 238 (2023) 110351.
[7] H. Kitagawa, T. Asawa, T. Kubota, A.R. Trihamdani, Numerical simulation of radiant floor cooling systems using PCM for naturally ventilated buildings in a hot and humid climate, Building and Environment, 226 (2022) 109762.
[8] S. Yang, Y. Zhang, Y. Zhao, J.F. Torres, X. Wang, PCM-based ceiling panels for passive cooling in buildings: A CFD modelling, Energy and Buildings, 285 (2023) 112898.
[9] S.M. Alghamdi, M.N. Ajour, N.H. Abu-Hamdeh, A. Karimipour, Using PCM for building energy management to postpone the electricity demand peak load and approving a new PID controller to activate alternative chiller, Journal of Building Engineering, 57 (2022) 104884.
[10] G. Gholamibozanjani, M. Farid, Peak load shifting using a price-based control in PCM-enhanced buildings, Solar Energy, 211 (2020) 661-673.
[11] N. Stathopoulos, M. El Mankibi, R. Issoglio, P. Michel, F. Haghighat, Air–PCM heat exchanger for peak load management: Experimental and simulation, Solar Energy, 132 (2016) 453-466.
[12] F.K. Malik, M.M. Khan, H.F. Ahmed, M. Irfan, I.U. Ahad, Performance characteristics of PCM based thermal energy storage system for fluctuating waste heat sources, Case Studies in Thermal Engineering, 34 (2022) 102012.
[13] V. Soni, A. Kumar, V.K. Jain, Performance evaluation of nano-enhanced phase change materials during discharge stage in waste heat recovery, Renewable Energy, 127 (2018) 587-601.
[14] V. Soni, A. Kumar, V.K. Jain, Fast waste heat recovery in 100–150 °C using close-contact charging of nano-enhanced PCM composite, Journal of Molecular Liquids, 285 (2019) 347-361.
[15] J.M. Mahdi, S. Lohrasbi, E.C. Nsofor, Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: A review, International Journal of Heat and Mass Transfer, 137 (2019) 630-649.
[16] H. Bazai, M.A. Moghimi, H.I. Mohammed, R. Babaei-Mahani, P. Talebizadehsardari, Numerical study of circular-elliptical double-pipe thermal energy storage systems, Journal of Energy Storage, 30 (2020) 101440.
[17] A. Shahsavar, H.M. Ali, R.B. Mahani, P. Talebizadehsardari, Numerical study of melting and solidification in a wavy double-pipe latent heat thermal energy storage system, Journal of Thermal Analysis and Calorimetry, 141(5) (2020) 1785-1799.
[18] A. Shahsavar, J. Khosravi, H.I. Mohammed, P. Talebizadehsardari, Performance evaluation of melting/solidification mechanism in a variable wave-length wavy channel double-tube latent heat storage system, Journal of Energy Storage, 27 (2020) 101063.
[19] Y. Xu, M.-J. Li, Z.-J. Zheng, X.-D. Xue, Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment, Applied Energy, 212 (2018) 868-880.
[20] Y. Xu, Q. Ren, Z.-J. Zheng, Y.-L. He, Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media, Applied Energy, 193 (2017) 84-95.
[21] A.M. Abdulateef, S. Mat, J. Abdulateef, K. Sopian, A.A. Al-Abidi, Geometric and design parameters of fins employed for enhancing thermal energy storage systems: a review, Renewable and Sustainable Energy Reviews, 82 (2018) 1620-1635.
[22] R.P. Singh, H. Xu, S.C. Kaushik, D. Rakshit, A. Romagnoli, Effective utilization of natural convection via novel fin design & influence of enhanced viscosity due to carbon nano-particles in a solar cooling thermal storage system, Solar Energy, 183 (2019) 105-119.
[23] J.M. Mahdi, S. Lohrasbi, D.D. Ganji, E.C. Nsofor, Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger, International Journal of Heat and Mass Transfer, 124 (2018) 663-676.
[24] M. Ghalambaz, S.A.M. Mehryan, M. Mozaffari, O. Younis, A. Ghosh, The Effect of Variable-Length Fins and Different High Thermal Conductivity Nanoparticles in the Performance of the Energy Storage Unit Containing Bio-Based Phase Change Substance, Sustainability, 13(5) (2021) 2884.
[25] A. Shahsavar, A. Goodarzi, H.I. Mohammed, A. Shirneshan, P. Talebizadehsardari, Thermal performance evaluation of non-uniform fin array in a finned double-pipe latent heat storage system, Energy, 193 (2020) 116800.
[26] Y. Xu, Z.-J. Zheng, C. Yang, X. Cai, Intelligent optimization of horizontal fins to improve the melting performance of phase change materials in a square cavity with isothermal vertical wall, Journal of Energy Storage, 44 (2021) 103334.
[27] B. Hussain, M. Irfan, M.M. Khan, S. Ullah, F.u. Hasnain, Geometric optimization of fin structures for accelerated melting of phase change material in a triplex tube heat exchanger, Journal of Energy Storage, 79 (2024) 110162.
[28] S. Lohrasbi, S.Z. Miry, M. Gorji-Bandpy, D.D. Ganji, Performance enhancement of finned heat pipe assisted latent heat thermal energy storage system in the presence of nano-enhanced H2O as phase change material, International Journal of Hydrogen Energy, 42(10) (2017) 6526-6546.
[29] A. Chananipoor, Z. Azizi, B. Raei, N. Tahmasebi, Optimization of the thermal performance of nano-encapsulated phase change material slurry in double pipe heat exchanger: Design of experiments using response surface methodology (RSM), Journal of Building Engineering, 34 (2021) 101929.
[30] X. Huang, S. Yao, X. Yang, R. Zhou, Melting performance assessments on a triplex-tube thermal energy storage system: Optimization based on response surface method with natural convection, Renewable Energy, 188 (2022) 890-910.
[31] J.M. Mahdi, S. Lohrasbi, D.D. Ganji, E.C. Nsofor, Simultaneous energy storage and recovery in the triplex-tube heat exchanger with PCM, copper fins and Al2O3 nanoparticles, Energy Conversion and Management, 180 (2019) 949-961.
[32] M. Parsazadeh, X. Duan, Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit, Applied Energy, 216 (2018) 142-156.
[33] A.D. Brent, V.R. Voller, K.J. Reid, ENTHALPY-POROSITY TECHNIQUE FOR MODELING CONVECTION-DIFFUSION PHASE CHANGE: APPLICATION TO THE MELTING OF A PURE METAL, Numerical Heat Transfer, 13(3) (1988) 297-318.
[34] S. Mat, A.A. Al-Abidi, K. Sopian, M.Y. Sulaiman, A.T. Mohammad, Enhance heat transfer for PCM melting in triplex tube with internal–external fins, Energy Conversion and Management, 74 (2013) 223-236.