بهینه‌سازی چیدمان فین‌ها در مبدل حرارتی دو لوله‌ای جهت بهبود عملکرد ذخیره‌سازی در مواد تغییرفازدهنده

نوع مقاله : مقاله پژوهشی

نویسنده

پژوهشکده انرژی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

چکیده

استفاده از سیستم‌های ذخیره گرمای نهان با استفاده از مواد تغییر فازدهنده در سال‌های اخیر بسیار مورد توجه بوده است. استفاده از فین‌ها یکی از ساده‌ترین و ارزان‌ترین راهکارهای افزایش انتقال حرارت در ماده تغییرفاز دهنده و افزایش عملکرد سیستم ذخیره‌سازی است. با توجه به اینکه نحوه چیدمان فین‌ها در مدت زمان شارژ و در نتیجه راندمان انتقال حرارت تاثیر بسزایی دارد، هدف اصلی از این مطالعه، بهینه‌سازی چیدمان فین‌ها در محفظه ماده تغییرفاز دهنده در یک مبدل حرارتی دولوله‌ای، جهت کاهش زمان شارژ و در نتیجه افزایش راندمان سیستم ذخیره‌سازی انرژی است. برای این منظور معادلات حاکم شامل بقای جرم، بقای ممنتوم و بقای انرژی در یک مبدل حرارتی دولوله‌ای فین‌دار، با استفاده از نرم‌افزار انسیس-فلوئنت حل شده‌اند و رفتار حرارتی-سیالاتی ماده تغییرفاز دهنده و عملکرد سیستم ذخیره‌سازی مورد بررسی قرار گرفته است. همچنین برای یافتن بهترین چیدمان فین‌ها جهت بهینه‌سازی عملکرد ذخیره‌سازی، از روش سطح پاسخ و طرح مرکب مرکزی استفاده شده است. نتایج بدست آمده از سطح پاسخ با منحنی مرتبه سوم رتبه‌کاسته که از 25 شبیه‌سازی حاصل شده است، نشان می‌دهد در مقایسه با حالت بدون فین، چیدمان یکنواخت فین‌ها حدود 19% و چیدمان بهینه فین‌ها حدود 56% زمان شارژ را کاهش می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of Fin Arrangement in a Double-Pipe Heat Exchanger to Improve the Storage Performance of Phase Change Materials

نویسنده [English]

  • Amir Babak Ansari
Department of Energy, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
چکیده [English]

Using latent heat storage systems with phase change materials (PCM) is an effective way to store thermal energy, which has been of great interest in recent years. Using fins is one of the simplest and cheapest ways to increase heat transfer in PCMs and increase the performance of the storage system. Since the fin arrangement has a significant impact on the charging time of the PCM, the main goal of this study is to optimize the fin arrangement in the PCM chamber in a double-pipe heat exchanger to decrease the charging time, and thus increase the efficiency of the storage system. For this purpose, the governing equations, including conservation of mass, momentum, and energy in a finned double-pipe heat exchanger have been solved using ANSYS-Fluent software to investigate the thermal-hydraulic behavior of PCM. Also, to find the optimal fin arrangement and maximize the storage performance, the response surface method based on the central composite design has been implemented. The results obtained from the response surface with the reduced cubic equation show that compared to the case without fins, the charging time was reduced by 19% using the uniform fin configuration, while reduced by 56% using the optimal fin arrangement.

کلیدواژه‌ها [English]

  • Increasing Storage Performance
  • Phase Change Material
  • Double-Pipe Heat Exchanger
  • Optimal Fin Arrangement
  • Response Surface Method
[1] M. Alvarez-Rodriguez, M. Alonso-Martinez, I. Suarez-Ramon, P. José García-Nieto, Numerical model for determining the effective heat capacity of macroencapsulated PCM for building applications, Applied Thermal Engineering, 242 (2024) 122478.
[2] B.E. Jebasingh, A.V. Arasu, A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications, Energy Storage Materials, 24 (2020) 52-74.
[3] T. Pirasaci, A. Sunol, Potential of phase change materials (PCM) for building thermal performance enhancement: PCM-composite aggregate application throughout Turkey, Energy, 292 (2024) 130589.
[4] A. Refahi, A. Rostami, M. Amani, Implementation of a double layer of PCM integrated into the building exterior walls for reducing annual energy consumption: Effect of PCM wallboards position, Journal of Energy Storage, 82 (2024) 110556.
[5] Z. Hu, W. Li, C. Yang, H. Huang, Y. Guo, F. Ge, Y. Zhang, Thermal performance of an active casing pipe macro-encapsulated PCM wall for space cooling and heating of residential building in hot summer and cold winter region in China, Construction and Building Materials, 422 (2024) 135831.
[6] H. Kitagawa, T. Asawa, M.A. Del Rio, T. Kubota, A.R. Trihamdani, Thermal energy simulation of PCM-based radiant floor cooling systems for naturally ventilated buildings in a hot and humid climate, Building and Environment, 238 (2023) 110351.
[7] H. Kitagawa, T. Asawa, T. Kubota, A.R. Trihamdani, Numerical simulation of radiant floor cooling systems using PCM for naturally ventilated buildings in a hot and humid climate, Building and Environment, 226 (2022) 109762.
[8] S. Yang, Y. Zhang, Y. Zhao, J.F. Torres, X. Wang, PCM-based ceiling panels for passive cooling in buildings: A CFD modelling, Energy and Buildings, 285 (2023) 112898.
[9] S.M. Alghamdi, M.N. Ajour, N.H. Abu-Hamdeh, A. Karimipour, Using PCM for building energy management to postpone the electricity demand peak load and approving a new PID controller to activate alternative chiller, Journal of Building Engineering, 57 (2022) 104884.
[10] G. Gholamibozanjani, M. Farid, Peak load shifting using a price-based control in PCM-enhanced buildings, Solar Energy, 211 (2020) 661-673.
[11] N. Stathopoulos, M. El Mankibi, R. Issoglio, P. Michel, F. Haghighat, Air–PCM heat exchanger for peak load management: Experimental and simulation, Solar Energy, 132 (2016) 453-466.
[12] F.K. Malik, M.M. Khan, H.F. Ahmed, M. Irfan, I.U. Ahad, Performance characteristics of PCM based thermal energy storage system for fluctuating waste heat sources, Case Studies in Thermal Engineering, 34 (2022) 102012.
[13] V. Soni, A. Kumar, V.K. Jain, Performance evaluation of nano-enhanced phase change materials during discharge stage in waste heat recovery, Renewable Energy, 127 (2018) 587-601.
[14] V. Soni, A. Kumar, V.K. Jain, Fast waste heat recovery in 100–150 °C using close-contact charging of nano-enhanced PCM composite, Journal of Molecular Liquids, 285 (2019) 347-361.
[15] J.M. Mahdi, S. Lohrasbi, E.C. Nsofor, Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: A review, International Journal of Heat and Mass Transfer, 137 (2019) 630-649.
[16] H. Bazai, M.A. Moghimi, H.I. Mohammed, R. Babaei-Mahani, P. Talebizadehsardari, Numerical study of circular-elliptical double-pipe thermal energy storage systems, Journal of Energy Storage, 30 (2020) 101440.
[17] A. Shahsavar, H.M. Ali, R.B. Mahani, P. Talebizadehsardari, Numerical study of melting and solidification in a wavy double-pipe latent heat thermal energy storage system, Journal of Thermal Analysis and Calorimetry, 141(5) (2020) 1785-1799.
[18] A. Shahsavar, J. Khosravi, H.I. Mohammed, P. Talebizadehsardari, Performance evaluation of melting/solidification mechanism in a variable wave-length wavy channel double-tube latent heat storage system, Journal of Energy Storage, 27 (2020) 101063.
[19] Y. Xu, M.-J. Li, Z.-J. Zheng, X.-D. Xue, Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment, Applied Energy, 212 (2018) 868-880.
[20] Y. Xu, Q. Ren, Z.-J. Zheng, Y.-L. He, Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media, Applied Energy, 193 (2017) 84-95.
[21] A.M. Abdulateef, S. Mat, J. Abdulateef, K. Sopian, A.A. Al-Abidi, Geometric and design parameters of fins employed for enhancing thermal energy storage systems: a review, Renewable and Sustainable Energy Reviews, 82 (2018) 1620-1635.
[22] R.P. Singh, H. Xu, S.C. Kaushik, D. Rakshit, A. Romagnoli, Effective utilization of natural convection via novel fin design & influence of enhanced viscosity due to carbon nano-particles in a solar cooling thermal storage system, Solar Energy, 183 (2019) 105-119.
[23] J.M. Mahdi, S. Lohrasbi, D.D. Ganji, E.C. Nsofor, Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger, International Journal of Heat and Mass Transfer, 124 (2018) 663-676.
[24] M. Ghalambaz, S.A.M. Mehryan, M. Mozaffari, O. Younis, A. Ghosh, The Effect of Variable-Length Fins and Different High Thermal Conductivity Nanoparticles in the Performance of the Energy Storage Unit Containing Bio-Based Phase Change Substance, Sustainability, 13(5) (2021) 2884.
[25] A. Shahsavar, A. Goodarzi, H.I. Mohammed, A. Shirneshan, P. Talebizadehsardari, Thermal performance evaluation of non-uniform fin array in a finned double-pipe latent heat storage system, Energy, 193 (2020) 116800.
[26] Y. Xu, Z.-J. Zheng, C. Yang, X. Cai, Intelligent optimization of horizontal fins to improve the melting performance of phase change materials in a square cavity with isothermal vertical wall, Journal of Energy Storage, 44 (2021) 103334.
[27] B. Hussain, M. Irfan, M.M. Khan, S. Ullah, F.u. Hasnain, Geometric optimization of fin structures for accelerated melting of phase change material in a triplex tube heat exchanger, Journal of Energy Storage, 79 (2024) 110162.
[28] S. Lohrasbi, S.Z. Miry, M. Gorji-Bandpy, D.D. Ganji, Performance enhancement of finned heat pipe assisted latent heat thermal energy storage system in the presence of nano-enhanced H2O as phase change material, International Journal of Hydrogen Energy, 42(10) (2017) 6526-6546.
[29] A. Chananipoor, Z. Azizi, B. Raei, N. Tahmasebi, Optimization of the thermal performance of nano-encapsulated phase change material slurry in double pipe heat exchanger: Design of experiments using response surface methodology (RSM), Journal of Building Engineering, 34 (2021) 101929.
[30] X. Huang, S. Yao, X. Yang, R. Zhou, Melting performance assessments on a triplex-tube thermal energy storage system: Optimization based on response surface method with natural convection, Renewable Energy, 188 (2022) 890-910.
[31] J.M. Mahdi, S. Lohrasbi, D.D. Ganji, E.C. Nsofor, Simultaneous energy storage and recovery in the triplex-tube heat exchanger with PCM, copper fins and Al2O3 nanoparticles, Energy Conversion and Management, 180 (2019) 949-961.
[32] M. Parsazadeh, X. Duan, Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit, Applied Energy, 216 (2018) 142-156.
[33] A.D. Brent, V.R. Voller, K.J. Reid, ENTHALPY-POROSITY TECHNIQUE FOR MODELING CONVECTION-DIFFUSION PHASE CHANGE: APPLICATION TO THE MELTING OF A PURE METAL, Numerical Heat Transfer, 13(3) (1988) 297-318.
[34] S. Mat, A.A. Al-Abidi, K. Sopian, M.Y. Sulaiman, A.T. Mohammad, Enhance heat transfer for PCM melting in triplex tube with internal–external fins, Energy Conversion and Management, 74 (2013) 223-236.